5 datasets found
  1. f

    Summary of human specimens used in the study.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Summary of human specimens used in the study. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  2. f

    185 shared genes in DEGs related to mouse AD.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 185 shared genes in DEGs related to mouse AD. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s007
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  3. f

    85 shared genes in DEGs related to mouse age.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 85 shared genes in DEGs related to mouse age. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s005
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  4. f

    217 shared genes in DEGs related to human age.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 217 shared genes in DEGs related to human age. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  5. f

    78 shared genes in DEGs related to age and AD.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 78 shared genes in DEGs related to age and AD. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Summary of human specimens used in the study. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s002

Summary of human specimens used in the study.

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Nov 26, 2024
Dataset provided by
PLOS ONE
Authors
Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

Search
Clear search
Close search
Google apps
Main menu