6 datasets found
  1. F

    Bahasa Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-bahasa-indonesia
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Bahasa Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Bahasa -speaking Real Estate customers. With over 40 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 40 hours of dual-channel call center recordings between native Bahasa speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 80 native Bahasa speakers from our verified contributor community.
    Regions: Representing different provinces across Indonesia to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Bahasa real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

  2. F

    Hindi Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Hindi Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-hindi-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Hindi Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Hindi -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Hindi speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Hindi speakers from our verified contributor community.
    Regions: Representing different provinces across India to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for Hindi real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <span

  3. F

    American English Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). American English Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-english-usa
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This US English Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for English -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native US English speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native US English speakers from our verified contributor community.
    Regions: Representing different provinces across United States of America to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for English real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px;

  4. F

    Canadian English Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Canadian English Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-english-canada
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Canada
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Canadian English Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for English -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Canadian English speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Canadian English speakers from our verified contributor community.
    Regions: Representing different provinces across Canada to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for English real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px;

  5. F

    British English Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). British English Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-english-uk
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This UK English Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for English -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native UK English speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native UK English speakers from our verified contributor community.
    Regions: Representing different provinces across United Kingdom to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for English real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

  6. F

    Indian English Call Center Data for Realestate AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Indian English Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-english-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Indian English Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for English -speaking Real Estate customers. With over 30 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

    Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

    Speech Data

    The dataset features 30 hours of dual-channel call center recordings between native Indian English speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

    Participant Diversity:
    Speakers: 60 native Indian English speakers from our verified contributor community.
    Regions: Representing different provinces across India to ensure accent and dialect variation.
    Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
    Call Duration: Average 5–15 minutes per call.
    Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in noise-free and echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

    Inbound Calls:
    Property Inquiries
    Rental Availability
    Renovation Consultation
    Property Features & Amenities
    Investment Property Evaluation
    Ownership History & Legal Info, and more
    Outbound Calls:
    New Listing Notifications
    Post-Purchase Follow-ups
    Property Recommendations
    Value Updates
    Customer Satisfaction Surveys, and others

    Such domain-rich variety ensures model generalization across common real estate support conversations.

    Transcription

    All recordings are accompanied by precise, manually verified transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., background noise, pauses)
    High transcription accuracy with word error rate below 5% via dual-layer human review.

    These transcriptions streamline ASR and NLP development for English real estate voice applications.

    Metadata

    Detailed metadata accompanies each participant and conversation:

    Participant Metadata: ID, age, gender, location, accent, and dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

    This enables smart filtering, dialect-focused model training, and structured dataset exploration.

    Usage and Applications

    This dataset is ideal for voice AI and NLP systems built for the real estate sector:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
FutureBee AI (2022). Bahasa Call Center Data for Realestate AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/realestate-call-center-conversation-bahasa-indonesia

Bahasa Call Center Data for Realestate AI

Bahasa call center speech corpus in realestate industry

Explore at:
wavAvailable download formats
Dataset updated
Aug 1, 2022
Dataset provided by
FutureBeeAI
Authors
FutureBee AI
License

https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

Dataset funded by
FutureBeeAI
Description

Introduction

This Bahasa Call Center Speech Dataset for the Real Estate industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Bahasa -speaking Real Estate customers. With over 40 hours of unscripted, real-world audio, this dataset captures authentic conversations between customers and real estate agents ideal for building robust ASR models.

Curated by FutureBeeAI, this dataset equips voice AI developers, real estate tech platforms, and NLP researchers with the data needed to create high-accuracy, production-ready models for property-focused use cases.

Speech Data

The dataset features 40 hours of dual-channel call center recordings between native Bahasa speakers. Captured in realistic real estate consultation and support contexts, these conversations span a wide array of property-related topics from inquiries to investment advice offering deep domain coverage for AI model development.

Participant Diversity:
Speakers: 80 native Bahasa speakers from our verified contributor community.
Regions: Representing different provinces across Indonesia to ensure accent and dialect variation.
Participant Profile: Balanced gender mix (60% male, 40% female) and age range from 18 to 70.
Recording Details:
Conversation Nature: Naturally flowing, unscripted agent-customer discussions.
Call Duration: Average 5–15 minutes per call.
Audio Format: Stereo WAV, 16-bit, recorded at 8kHz and 16kHz.
Recording Environment: Captured in noise-free and echo-free conditions.

Topic Diversity

This speech corpus includes both inbound and outbound calls, featuring positive, neutral, and negative outcomes across a wide range of real estate scenarios.

Inbound Calls:
Property Inquiries
Rental Availability
Renovation Consultation
Property Features & Amenities
Investment Property Evaluation
Ownership History & Legal Info, and more
Outbound Calls:
New Listing Notifications
Post-Purchase Follow-ups
Property Recommendations
Value Updates
Customer Satisfaction Surveys, and others

Such domain-rich variety ensures model generalization across common real estate support conversations.

Transcription

All recordings are accompanied by precise, manually verified transcriptions in JSON format.

Transcription Includes:
Speaker-Segmented Dialogues
Time-coded Segments
Non-speech Tags (e.g., background noise, pauses)
High transcription accuracy with word error rate below 5% via dual-layer human review.

These transcriptions streamline ASR and NLP development for Bahasa real estate voice applications.

Metadata

Detailed metadata accompanies each participant and conversation:

Participant Metadata: ID, age, gender, location, accent, and dialect.
Conversation Metadata: Topic, call type, sentiment, sample rate, and technical details.

This enables smart filtering, dialect-focused model training, and structured dataset exploration.

Usage and Applications

This dataset is ideal for voice AI and NLP systems built for the real estate sector:

Search
Clear search
Close search
Google apps
Main menu