Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; “advancement factor”, and “player position column”. A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition’s 18-yard box, and shots from successful passes to the far post.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; “advancement factor”, and “player position column”. A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition’s 18-yard box, and shots from successful passes to the far post.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In association football, predicting the likelihood and outcome of a shot at a goal is useful but challenging. Expected goal (xG) models can be used in a variety of ways including evaluating performance and designing offensive strategies. This study proposed a novel framework that uses the events preceding a shot, to improve the accuracy of the expected goals (xG) metric. A combination of previously explored and unexplored temporal features is utilized in the proposed framework. The new features include; “advancement factor”, and “player position column”. A random forest model was used, which performed better than published single-event-based models in the literature. Results further demonstrated a significant improvement in model performance with the inclusion of preceding event information. The proposed framework and model enable the discovery of event sequences that improve xG, which include; opportunities built up from the sides of the 18-yard box, shots attempted from in front of the goal within the opposition’s 18-yard box, and shots from successful passes to the far post.