3 datasets found
  1. F

    Bahasa Human-Human Chat Dataset for Conversational AI & NLP

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Human-Human Chat Dataset for Conversational AI & NLP [Dataset]. https://www.futurebeeai.com/dataset/text-dataset/bahasa-general-domain-conversation-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The Bahasa General Domain Chat Dataset is a high-quality, text-based dataset designed to train and evaluate conversational AI, NLP models, and smart assistants in real-world Bahasa usage. Collected through FutureBeeAI’s trusted crowd community, this dataset reflects natural, native-level Bahasa conversations covering a broad spectrum of everyday topics.

    Conversational Text Data

    This dataset includes over 15000 chat transcripts, each featuring free-flowing dialogue between two native Bahasa speakers. The conversations are spontaneous, context-rich, and mimic informal, real-life texting behavior.

    Words per Chat: 300–700
    Turns per Chat: Up to 50 dialogue turns
    Contributors: 200 native Bahasa speakers from the FutureBeeAI Crowd Community
    Format: TXT, DOCS, JSON or CSV (customizable)
    Structure: Each record contains the full chat, topic tag, and metadata block

    Diversity and Domain Coverage

    Conversations span a wide variety of general-domain topics to ensure comprehensive model exposure:

    Music, books, and movies
    Health and wellness
    Children and parenting
    Family life and relationships
    Food and cooking
    Education and studying
    Festivals and traditions
    Environment and daily life
    Internet and tech usage
    Childhood memories and casual chatting

    This diversity ensures the dataset is useful across multiple NLP and language understanding applications.

    Linguistic Authenticity

    Chats reflect informal, native-level Bahasa usage with:

    Colloquial expressions and local dialect influence
    Domain-relevant terminology
    Language-specific grammar, phrasing, and sentence flow
    Inclusion of realistic details such as names, phone numbers, email addresses, locations, dates, times, local currencies, and culturally grounded references
    Representation of different writing styles and input quirks to ensure training data realism

    Metadata

    Every chat instance is accompanied by structured metadata, which includes:

    Participant Age
    Gender
    Country/Region
    Chat Domain
    Chat Topic
    Dialect

    This metadata supports model filtering, demographic-specific evaluation, and more controlled fine-tuning workflows.

    Data Quality Assurance

    All chat records pass through a rigorous QA process to maintain consistency and accuracy:

    Manual review for content completeness
    Format checks for chat turns and metadata
    Linguistic verification by native speakers
    Removal of inappropriate or unusable samples

    This ensures a clean, reliable dataset ready for high-performance AI model training.

    Applications

    This dataset is ideal for training and evaluating a wide range of text-based AI systems:

    Conversational AI / Chatbots
    Smart assistants and voicebots
    <div

  2. F

    Hindi Human-Human Chat Dataset for Conversational AI & NLP

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Hindi Human-Human Chat Dataset for Conversational AI & NLP [Dataset]. https://www.futurebeeai.com/dataset/text-dataset/hindi-general-domain-conversation-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The Hindi General Domain Chat Dataset is a high-quality, text-based dataset designed to train and evaluate conversational AI, NLP models, and smart assistants in real-world Hindi usage. Collected through FutureBeeAI’s trusted crowd community, this dataset reflects natural, native-level Hindi conversations covering a broad spectrum of everyday topics.

    Conversational Text Data

    This dataset includes over 15000 chat transcripts, each featuring free-flowing dialogue between two native Hindi speakers. The conversations are spontaneous, context-rich, and mimic informal, real-life texting behavior.

    Words per Chat: 300–700
    Turns per Chat: Up to 50 dialogue turns
    Contributors: 200 native Hindi speakers from the FutureBeeAI Crowd Community
    Format: TXT, DOCS, JSON or CSV (customizable)
    Structure: Each record contains the full chat, topic tag, and metadata block

    Diversity and Domain Coverage

    Conversations span a wide variety of general-domain topics to ensure comprehensive model exposure:

    Music, books, and movies
    Health and wellness
    Children and parenting
    Family life and relationships
    Food and cooking
    Education and studying
    Festivals and traditions
    Environment and daily life
    Internet and tech usage
    Childhood memories and casual chatting

    This diversity ensures the dataset is useful across multiple NLP and language understanding applications.

    Linguistic Authenticity

    Chats reflect informal, native-level Hindi usage with:

    Colloquial expressions and local dialect influence
    Domain-relevant terminology
    Language-specific grammar, phrasing, and sentence flow
    Inclusion of realistic details such as names, phone numbers, email addresses, locations, dates, times, local currencies, and culturally grounded references
    Representation of different writing styles and input quirks to ensure training data realism

    Metadata

    Every chat instance is accompanied by structured metadata, which includes:

    Participant Age
    Gender
    Country/Region
    Chat Domain
    Chat Topic
    Dialect

    This metadata supports model filtering, demographic-specific evaluation, and more controlled fine-tuning workflows.

    Data Quality Assurance

    All chat records pass through a rigorous QA process to maintain consistency and accuracy:

    Manual review for content completeness
    Format checks for chat turns and metadata
    Linguistic verification by native speakers
    Removal of inappropriate or unusable samples

    This ensures a clean, reliable dataset ready for high-performance AI model training.

    Applications

    This dataset is ideal for training and evaluating a wide range of text-based AI systems:

    Conversational AI / Chatbots
    Smart assistants and voicebots
    <div

  3. F

    English Human-Human Chat Dataset for Conversational AI & NLP

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). English Human-Human Chat Dataset for Conversational AI & NLP [Dataset]. https://www.futurebeeai.com/dataset/text-dataset/english-general-domain-conversation-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The English General Domain Chat Dataset is a high-quality, text-based dataset designed to train and evaluate conversational AI, NLP models, and smart assistants in real-world English usage. Collected through FutureBeeAI’s trusted crowd community, this dataset reflects natural, native-level English conversations covering a broad spectrum of everyday topics.

    Conversational Text Data

    This dataset includes over 15000 chat transcripts, each featuring free-flowing dialogue between two native English speakers. The conversations are spontaneous, context-rich, and mimic informal, real-life texting behavior.

    Words per Chat: 300–700
    Turns per Chat: Up to 50 dialogue turns
    Contributors: 200 native English speakers from the FutureBeeAI Crowd Community
    Format: TXT, DOCS, JSON or CSV (customizable)
    Structure: Each record contains the full chat, topic tag, and metadata block

    Diversity and Domain Coverage

    Conversations span a wide variety of general-domain topics to ensure comprehensive model exposure:

    Music, books, and movies
    Health and wellness
    Children and parenting
    Family life and relationships
    Food and cooking
    Education and studying
    Festivals and traditions
    Environment and daily life
    Internet and tech usage
    Childhood memories and casual chatting

    This diversity ensures the dataset is useful across multiple NLP and language understanding applications.

    Linguistic Authenticity

    Chats reflect informal, native-level English usage with:

    Colloquial expressions and local dialect influence
    Domain-relevant terminology
    Language-specific grammar, phrasing, and sentence flow
    Inclusion of realistic details such as names, phone numbers, email addresses, locations, dates, times, local currencies, and culturally grounded references
    Representation of different writing styles and input quirks to ensure training data realism

    Metadata

    Every chat instance is accompanied by structured metadata, which includes:

    Participant Age
    Gender
    Country/Region
    Chat Domain
    Chat Topic
    Dialect

    This metadata supports model filtering, demographic-specific evaluation, and more controlled fine-tuning workflows.

    Data Quality Assurance

    All chat records pass through a rigorous QA process to maintain consistency and accuracy:

    Manual review for content completeness
    Format checks for chat turns and metadata
    Linguistic verification by native speakers
    Removal of inappropriate or unusable samples

    This ensures a clean, reliable dataset ready for high-performance AI model training.

    Applications

    This dataset is ideal for training and evaluating a wide range of text-based AI systems:

    Conversational AI / Chatbots
    Smart assistants and voicebots
    <div

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
FutureBee AI (2022). Bahasa Human-Human Chat Dataset for Conversational AI & NLP [Dataset]. https://www.futurebeeai.com/dataset/text-dataset/bahasa-general-domain-conversation-text-dataset

Bahasa Human-Human Chat Dataset for Conversational AI & NLP

Explore at:
wavAvailable download formats
Dataset updated
Aug 1, 2022
Dataset provided by
FutureBeeAI
Authors
FutureBee AI
License

https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

Dataset funded by
FutureBeeAI
Description

Introduction

The Bahasa General Domain Chat Dataset is a high-quality, text-based dataset designed to train and evaluate conversational AI, NLP models, and smart assistants in real-world Bahasa usage. Collected through FutureBeeAI’s trusted crowd community, this dataset reflects natural, native-level Bahasa conversations covering a broad spectrum of everyday topics.

Conversational Text Data

This dataset includes over 15000 chat transcripts, each featuring free-flowing dialogue between two native Bahasa speakers. The conversations are spontaneous, context-rich, and mimic informal, real-life texting behavior.

Words per Chat: 300–700
Turns per Chat: Up to 50 dialogue turns
Contributors: 200 native Bahasa speakers from the FutureBeeAI Crowd Community
Format: TXT, DOCS, JSON or CSV (customizable)
Structure: Each record contains the full chat, topic tag, and metadata block

Diversity and Domain Coverage

Conversations span a wide variety of general-domain topics to ensure comprehensive model exposure:

Music, books, and movies
Health and wellness
Children and parenting
Family life and relationships
Food and cooking
Education and studying
Festivals and traditions
Environment and daily life
Internet and tech usage
Childhood memories and casual chatting

This diversity ensures the dataset is useful across multiple NLP and language understanding applications.

Linguistic Authenticity

Chats reflect informal, native-level Bahasa usage with:

Colloquial expressions and local dialect influence
Domain-relevant terminology
Language-specific grammar, phrasing, and sentence flow
Inclusion of realistic details such as names, phone numbers, email addresses, locations, dates, times, local currencies, and culturally grounded references
Representation of different writing styles and input quirks to ensure training data realism

Metadata

Every chat instance is accompanied by structured metadata, which includes:

Participant Age
Gender
Country/Region
Chat Domain
Chat Topic
Dialect

This metadata supports model filtering, demographic-specific evaluation, and more controlled fine-tuning workflows.

Data Quality Assurance

All chat records pass through a rigorous QA process to maintain consistency and accuracy:

Manual review for content completeness
Format checks for chat turns and metadata
Linguistic verification by native speakers
Removal of inappropriate or unusable samples

This ensures a clean, reliable dataset ready for high-performance AI model training.

Applications

This dataset is ideal for training and evaluating a wide range of text-based AI systems:

Conversational AI / Chatbots
Smart assistants and voicebots
<div

Search
Clear search
Close search
Google apps
Main menu