Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The CIC-IDS-V2 is an extended version of the original CIC-IDS 2017 dataset. The dataset is normalised and 1 new class called "Comb" is added which is a combination of synthesised data of multiple non-benign classes.
To cite the dataset, please reference the original paper with DOI: 10.1109/SmartNets61466.2024.10577645. The paper is published in IEEE SmartNets and can be accessed here.
Citation info:
Madhubalan, Akshayraj & Gautam, Amit & Tiwary, Priya. (2024). Blender-GAN: Multi-Target Conditional Generative Adversarial Network for Novel Class Synthetic Data Generation. 1-7. 10.1109/SmartNets61466.2024.10577645.
This dataset was made by Abluva Inc, a Palo Alto based, research-driven Data Protection firm. Our data protection platform empowers customers to secure data through advanced security mechanisms such as Fine Grained Access control and sophisticated depersonalization algorithms (e.g. Pseudonymization, Anonymization and Randomization). Abluva's Data Protection solutions facilitate data democratization within and outside the organizations, mitigating the concerns related to theft and compliance. The innovative intrusion detection algorithm by Abluva employs patented technologies for an intricately balanced approach that excludes normal access deviations, ensuring intrusion detection without disrupting the business operations. Abluva’s Solution enables organizations to extract further value from their data by enabling secure Knowledge Graphs and deploying Secure Data as a Service among other novel uses of data. Committed to providing a safe and secure environment, Abluva empowers organizations to unlock the full potential of their data.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The CIC-IDS-V2 is an extended version of the original CIC-IDS 2017 dataset. The dataset is normalised and 1 new class called "Comb" is added which is a combination of synthesised data of multiple non-benign classes. To cite the dataset, please reference the original paper with DOI: 10.1109/SmartNets61466.2024.10577645. The paper is published in IEEE SmartNets and can be accessed here:… See the full description on the dataset page: https://huggingface.co/datasets/abluva/CIC-IDS-2017-V2.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The CIC-IDS-V2 is an extended version of the original CIC-IDS 2017 dataset. The dataset is normalised and 1 new class called "Comb" is added which is a combination of synthesised data of multiple non-benign classes.
To cite the dataset, please reference the original paper with DOI: 10.1109/SmartNets61466.2024.10577645. The paper is published in IEEE SmartNets and can be accessed here.
Citation info:
Madhubalan, Akshayraj & Gautam, Amit & Tiwary, Priya. (2024). Blender-GAN: Multi-Target Conditional Generative Adversarial Network for Novel Class Synthetic Data Generation. 1-7. 10.1109/SmartNets61466.2024.10577645.
This dataset was made by Abluva Inc, a Palo Alto based, research-driven Data Protection firm. Our data protection platform empowers customers to secure data through advanced security mechanisms such as Fine Grained Access control and sophisticated depersonalization algorithms (e.g. Pseudonymization, Anonymization and Randomization). Abluva's Data Protection solutions facilitate data democratization within and outside the organizations, mitigating the concerns related to theft and compliance. The innovative intrusion detection algorithm by Abluva employs patented technologies for an intricately balanced approach that excludes normal access deviations, ensuring intrusion detection without disrupting the business operations. Abluva’s Solution enables organizations to extract further value from their data by enabling secure Knowledge Graphs and deploying Secure Data as a Service among other novel uses of data. Committed to providing a safe and secure environment, Abluva empowers organizations to unlock the full potential of their data.