This Level 1 (L1) dataset contains the Version 2.1 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of meters squared from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. This version supersedes Version 2.0. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 6 days (or better) from the last recorded measurement time. The Version 2.1 release represents the second science-quality release. Here is a summary of improvements that reflect the quality of the Version 2.1 data release: 1) data is now available when the CYGNSS satellites are rolled away from nadir during orbital high beta-angle periods, resulting in a significant amount of additional data; 2) correction to coordinate frames result in more accurate estimates of receiver antenna gain at the specular point; 3) improved calibration for analog-to-digital conversion results in better consistency between CYGNSS satellites measurements at nearly the same location and time; 4) improved GPS EIRP and transmit antenna pattern calibration results in significantly reduced PRN-dependence in the observables; 5) improved estimation of the location of the specular point within the DDM; 6) an altitude-dependent scattering area is used to normalize the scattering cross section (v2.0 used a simpler scattering area model that varied with incidence and azimuth angles but not altitude); 7) corrections added for noise floor-dependent biases in scattering cross section and leading edge slope of delay waveform observed in the v2.0 data. Users should also note that the receiver antenna pattern calibration is not applied per-DDM-bin in this v2.1 release.
This Level 1 (L1) dataset contains the Version 3.1 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. This version supersedes Version 3.0; https://doi.org/10.5067/CYGNS-L1X30. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 6 days (or better) from the last recorded measurement time. Here is a summary of improvements the calibration and processing changes to the Version 3.1 data: The CYGNSS science antenna gain patterns have been adjusted to improve the accuracy of the ocean surface scattering cross section (a.k.a. the NBRCS) calibration. They are adjusted so that the annual average observed NBRCS matches the model-predicted average as derived from Wavewatch-3 estimates of the surface roughness with the appropriate spectral tail extension added to the roughness spectrum. The adjustment is made independently at each position in the science antenna pattern. A correction for coarse quantization effects by the on-board digital processor has also been added. This reduces the effects of radio frequency interference, which appeared as calibration biases in the v3.0 L1 NBRCS and retrieval biases in the v3.0 L2 wind speed that were persistent at certain locations.
This Level 1 (L1) dataset contains the Version 1.2 Climate Data Record (CDR) of the geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 1 week. The Version 1.2 CDR is a collection of reanalysis products derived from the SDR v3.1 Level 1 data (https://doi.org/10.5067/CYGNS-L1X31 ). Calibration accuracy and long term stability are improved relative to SDR v3.0 using the same trackwise correction algorithm as was used by CDR v1.1 (https://doi.org/10.5067/CYGNS-L1C11 ), which was derived from SDR v2.1 Level 1 data (https://doi.org/10.5067/CYGNS-L1X21 ). Details of the algorithm are provided in the Trackwise Corrected CDR Algorithm Theoretical Basis Document. Trackwise correction is applied to the two primary CYGNSS L1 science data products, the normalized bistatic radar cross section (NBRCS) and the LES. The correction compensates for small errors in the Level 1 calibration, due e.g. to uncertainties in the GPS transmitting antenna gain patterns and the CYGNSS receiving antenna gain patterns. It should be noted that the trackwise correction algorithm cannot be successfully applied to all v3.1 SDR L1 data, so there is also some loss of samples that were present in v3.1.
This Level 1 (L1) dataset contains the Version 1.1 Climate Data Record (CDR) of the geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 1 month, depending on the availability of the MERRA wind speed reanalysis. The Version 1.1 CDR is a collection of reanalysis products derived from the SDR v3.0 Level 1 data (https://doi.org/10.5067/CYGNS-L1X30 ). Calibration accuracy and long term stability are improved relative to SDR v3.0 using the same trackwise correction algorithm as was used by CDR v1.0 (https://doi.org/10.5067/CYGNS-L1C10 ), which was derived from SDR v2.1 Level 1 data (https://doi.org/10.5067/CYGNS-L1X21 ). Details of the algorithm are provided in the Trackwise Corrected CDR Algorithm Theoretical Basis Document. Trackwise correction is applied to the two primary CYGNSS L1 science data products, the normalized bistatic radar cross section (NBRCS) and the LES. The correction compensates for small errors in the Level 1 calibration, due e.g. to uncertainties in the GPS transmitting antenna gain patterns and the CYGNSS receiving antenna gain patterns. It should be noted that the trackwise correction algorithm cannot be successfully applied to all v3.0 SDR L1 data, so there is also some loss of samples that were present in v3.0.
This Level 1 (L1) dataset contains the Version 1.0 Climate Data Record (CDR) of the geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 2 months, depending on the availability of the MERRA wind speed reanalysis. The Version 1.0 CDR represents the first climate-quality release and is a collection of reanalysis products derived from the v2.1 Level 1 data. Calibration accuracy and long term stability are improved relative to the SDR v2.1 using a new trackwise correction algorithm which constrains the average value of the L1 data using MERRA-2 reanalysis wind speeds. Details of the algorithm are provide in the Trackwise Corrected CDR Algorithm Theoretical Basis Document. The CDR exhibits improved calibration accuracy and stability over v2.1. Trackwise correction is applied to the two primary CYGNSS L1 science data products the normalized bistatic radar cross section (NBRCS) and the leading edge slope of the Doppler-integrated delay waveform (LES). The correction compensates for variations in the transmit power level of the GPS signals measured by the CYGNSS bistatic radar receivers. By comparison, the v2.1 SDR L1 algorithm assumes a constant GPS transmit power, and variations in it can be misinterpreted as variations in the L1 data and in subsequent L2 science data products derived from them. The GPS constellation consists of several different satellite models (a.k.a. block types) and the level of transmit power variation differs between them. The more recent Block IIF models (which account for ~37% of the GPS constellation) have significantly larger variations than the older models and, for this reason, they have been screened out and not used to produce v2.1 L2 or L3 science data products. Trackwise correction eliminates the need for this screening so CDR L2 and L3 data products now include Block IIF samples. It should be noted that the trackwise correction algorithm cannot be successfully applied to all v2.1 SDR L1 data, so there is also some loss of samples that were present in v2.1. Overall, there is a significant increase in sampling and improvement in spatial coverage with the CDR products.
This CYGNSS Level 1 (L1) science data record dataset contains the version 3.2 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. This version supersedes Version 3.1: https://doi.org/10.5067/CYGNS-L1X31. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 6 days (or better) from the last recorded measurement time. The correction for coarse quantization effects that was implemented in v3.1 for the signal portion of the DDM has been updated to include a correction to the noise floor portion of the DDM. This update is found to improve the sensitivity to soil moisture over land and to have a minimal effect on the sensitivity to wind speed over ocean. An update is made to the correction for the temperature dependence of the receiver electronics. This update reduces slow variations in calibration bias associated with a ~60 day oscillation in the mean temperature of the satellites. L1 variables over land and ocean are now combined in common netcdf data files, with additional details added regarding the specular point calculation over land. Nadir (science) antenna pattern and NBRCS rescaling has been updated to improve the inter-satellite consistency of the L1 calibration.The CYGNSS is a NASA Earth System Science Pathfinder Mission that is intended to collect the first frequent space‐based measurements of surface wind speeds in the inner core of tropical cyclones. Made up of a constellation of eight micro-satellites, the observatories provide nearly gap-free Earth coverage using an orbital inclination of approximately 35° from the equator, with a mean (i.e., average) revisit time of seven hours and a median revisit time of three hours. This inclination allows CYGNSS to measure ocean surface winds between approximately 38° N and 38° S latitude. This range includes the critical latitude band for tropical cyclone formation and movement.
This Level 1 (L1) dataset contains the Version 3.0 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of m2 from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. This version supersedes Version 2.1; https://doi.org/10.5067/CYGNS-L1X21 . Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 6 days (or better) from the last recorded measurement time. Here is a summary of improvements the calibration and processing changes to the Version 3.0 data: 1) the transmitted GPS signal strength in the direction of the DDM scattering surface is determined in real time from measurements of the direct signal from the GPS satellite to the CYGNSS navigation receiver, allowing for the BRCS calibration to be corrected for variations in GPS transmit power; 2) the NBRCS has been validated using comparisons with a large population of modeled values derived from coincident ocean surface roughness spectra produced by the NOAA WAVEWATCH-3 oceanographic wave model; 3) L1 calibration parameters have been adjusted to produce a best fit to the model population.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This Level 1 (L1) dataset contains the Version 2.1 geo-located Delay Doppler Maps (DDMs) calibrated into Power Received (Watts) and Bistatic Radar Cross Section (BRCS) expressed in units of meters squared from the Delay Doppler Mapping Instrument aboard the CYGNSS satellite constellation. This version supersedes Version 2.0. Other useful scientific and engineering measurement parameters include the DDM of Normalized Bistatic Radar Cross Section (NBRCS), the Delay Doppler Map Average (DDMA) of the NBRCS near the specular reflection point, and the Leading Edge Slope (LES) of the integrated delay waveform. The L1 dataset contains a number of other engineering and science measurement parameters, including sets of quality flags/indicators, error estimates, and bias estimates as well as a variety of orbital, spacecraft/sensor health, timekeeping, and geolocation parameters. At most, 8 netCDF data files (each file corresponding to a unique spacecraft in the CYGNSS constellation) are provided each day; under nominal conditions, there are typically 6-8 spacecraft retrieving data each day, but this can be maximized to 8 spacecraft under special circumstances in which higher than normal retrieval frequency is needed (i.e., during tropical storms and or hurricanes). Latency is approximately 6 days (or better) from the last recorded measurement time. The Version 2.1 release represents the second science-quality release. Here is a summary of improvements that reflect the quality of the Version 2.1 data release: 1) data is now available when the CYGNSS satellites are rolled away from nadir during orbital high beta-angle periods, resulting in a significant amount of additional data; 2) correction to coordinate frames result in more accurate estimates of receiver antenna gain at the specular point; 3) improved calibration for analog-to-digital conversion results in better consistency between CYGNSS satellites measurements at nearly the same location and time; 4) improved GPS EIRP and transmit antenna pattern calibration results in significantly reduced PRN-dependence in the observables; 5) improved estimation of the location of the specular point within the DDM; 6) an altitude-dependent scattering area is used to normalize the scattering cross section (v2.0 used a simpler scattering area model that varied with incidence and azimuth angles but not altitude); 7) corrections added for noise floor-dependent biases in scattering cross section and leading edge slope of delay waveform observed in the v2.0 data. Users should also note that the receiver antenna pattern calibration is not applied per-DDM-bin in this v2.1 release.