2 datasets found
  1. Classification

    • data.nasa.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Classification [Dataset]. https://data.nasa.gov/dataset/Classification/4kqk-drei
    Explore at:
    xml, csv, application/rssxml, json, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jun 26, 2018
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    A supervised learning task involves constructing a mapping from an input data space (normally described by several features) to an output space. A set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output consists of one or more classes to which the corresponding input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. In this chapter, we explain several basic classification algorithms.

  2. g

    Classification | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Classification | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_classification
    Explore at:
    Description

    A supervised learning task involves constructing a mapping from an input data space (normally described by several features) to an output space. A set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output consists of one or more classes to which the corresponding input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. In this chapter, we explain several basic classification algorithms.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2018). Classification [Dataset]. https://data.nasa.gov/dataset/Classification/4kqk-drei
Organization logo

Classification

Explore at:
xml, csv, application/rssxml, json, application/rdfxml, tsvAvailable download formats
Dataset updated
Jun 26, 2018
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Description

A supervised learning task involves constructing a mapping from an input data space (normally described by several features) to an output space. A set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output consists of one or more classes to which the corresponding input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. In this chapter, we explain several basic classification algorithms.

Search
Clear search
Close search
Google apps
Main menu