2 datasets found
  1. Global Land Cover Mapping and Estimation Yearly 30 m V001 - Dataset - NASA...

    • data.nasa.gov
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nasa.gov (2025). Global Land Cover Mapping and Estimation Yearly 30 m V001 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-land-cover-mapping-and-estimation-yearly-30-m-v001-6db80
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) Global Land Cover Mapping and Estimation (GLanCE) (https://sites.bu.edu/measures/) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids (https://measures-glance.github.io/glance-grids/) that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management. The GLanCE data product provides seven layers: the land cover class (https://sites.bu.edu/measures/project-overview/methods/), the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.Known Issues Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs.* The GlanCE data product tends to modestly overpredict developed land cover in arid regions.

  2. c

    Data from: Global Land Cover Mapping and Estimation Yearly 30 m V001

    • s.cnmilf.com
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LP DAAC;BU/EE/LCSC (2025). Global Land Cover Mapping and Estimation Yearly 30 m V001 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/global-land-cover-mapping-and-estimation-yearly-30-m-v001-80e06
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    LP DAAC;BU/EE/LCSC
    Description

    NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs (https://earthdata.nasa.gov/about/competitive-programs/measures)) Global Land Cover Mapping and Estimation (GLanCE (https://sites.bu.edu/measures/)) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids (https://measures-glance.github.io/glance-grids/) that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management. The GLanCE data product provides seven layers: the land cover class (https://sites.bu.edu/measures/project-overview/methods/), the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.Known Issues Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs.* The GlanCE data product tends to modestly overpredict developed land cover in arid regions.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.nasa.gov (2025). Global Land Cover Mapping and Estimation Yearly 30 m V001 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-land-cover-mapping-and-estimation-yearly-30-m-v001-6db80
Organization logo

Global Land Cover Mapping and Estimation Yearly 30 m V001 - Dataset - NASA Open Data Portal

Explore at:
Dataset updated
Apr 1, 2025
Dataset provided by
NASAhttp://nasa.gov/
Description

NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) (https://earthdata.nasa.gov/about/competitive-programs/measures) Global Land Cover Mapping and Estimation (GLanCE) (https://sites.bu.edu/measures/) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids (https://measures-glance.github.io/glance-grids/) that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management. The GLanCE data product provides seven layers: the land cover class (https://sites.bu.edu/measures/project-overview/methods/), the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.Known Issues Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs.* The GlanCE data product tends to modestly overpredict developed land cover in arid regions.

Search
Clear search
Close search
Google apps
Main menu