2 datasets found
  1. g

    Mars Dune Digital Database Merged | gimi9.com

    • gimi9.com
    Updated Dec 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Mars Dune Digital Database Merged | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_mars-dune-digital-database-merged
    Explore at:
    Dataset updated
    Dec 18, 2020
    Description

    The Mars Global Digital Dune Database provides a comprehensive and quantitative view of the geographic distribution of dune fields from 65° N to 65° S latitude. The database encompasses ~ 550 dune fields, covering ~ 70,000 km2, with an estimated total volume between 3,600 km3 and 13,400 km3. Over 2300 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images were used to build the database and are included in the ArcMap and ArcReader versions of the database. An initial data set of THEMIS band 9 spectral range images covering orbits 816-9601 (spanning 02/2002 - 02/2004 and Ls = 0.085º-358.531º) and comprising more than 30,000 images was chosen as the basis for the construction of the database. This provided ~98% nighttime and ~75% daytime areal coverage of Mars planet-wide. Images containing dunes were identified using THV (Interactive THEMIS IR Viewer written in Research Systems Incorporated's (RSI) IDL® software at the USGS in Flagstaff (www.mars-ice.org)). The 100 m/pixel resolution THEMIS IR images were used to locate potential dune features. The higher resolution THEMIS VIS and MOC NA images were used to assign Earth-based dune classifications (McKee, 1979). Where image quality allowed, slipface measurements based on gross dune morphology were digitized to represent primary wind direction responsible for that morphology. Azimuth values were calculated, from crater centroid to dune centroid, for dune fields located within craters. These indicators of wind direction can be compared to the included NASA/Ames Mars general circulation model (GCM) output (Harberle et al., 1999).

  2. d

    Data from: Mars Dune Digital Database Merged

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mars Dune Digital Database Merged [Dataset]. https://catalog.data.gov/dataset/mars-dune-digital-database-merged
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    The Mars Global Digital Dune Database provides a comprehensive and quantitative view of the geographic distribution of dune fields from 65° N to 65° S latitude. The database encompasses ~ 550 dune fields, covering ~ 70,000 km2, with an estimated total volume between 3,600 km3 and 13,400 km3. Over 2300 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images were used to build the database and are included in the ArcMap and ArcReader versions of the database. An initial data set of THEMIS band 9 spectral range images covering orbits 816-9601 (spanning 02/2002 - 02/2004 and Ls = 0.085º-358.531º) and comprising more than 30,000 images was chosen as the basis for the construction of the database. This provided ~98% nighttime and ~75% daytime areal coverage of Mars planet-wide. Images containing dunes were identified using THV (Interactive THEMIS IR Viewer written in Research Systems Incorporated's (RSI) IDL® software at the USGS in Flagstaff (www.mars-ice.org)). The 100 m/pixel resolution THEMIS IR images were used to locate potential dune features. The higher resolution THEMIS VIS and MOC NA images were used to assign Earth-based dune classifications (McKee, 1979). Where image quality allowed, slipface measurements based on gross dune morphology were digitized to represent primary wind direction responsible for that morphology. Azimuth values were calculated, from crater centroid to dune centroid, for dune fields located within craters. These indicators of wind direction can be compared to the included NASA/Ames Mars general circulation model (GCM) output (Harberle et al., 1999).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2020). Mars Dune Digital Database Merged | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_mars-dune-digital-database-merged

Mars Dune Digital Database Merged | gimi9.com

Explore at:
Dataset updated
Dec 18, 2020
Description

The Mars Global Digital Dune Database provides a comprehensive and quantitative view of the geographic distribution of dune fields from 65° N to 65° S latitude. The database encompasses ~ 550 dune fields, covering ~ 70,000 km2, with an estimated total volume between 3,600 km3 and 13,400 km3. Over 2300 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images were used to build the database and are included in the ArcMap and ArcReader versions of the database. An initial data set of THEMIS band 9 spectral range images covering orbits 816-9601 (spanning 02/2002 - 02/2004 and Ls = 0.085º-358.531º) and comprising more than 30,000 images was chosen as the basis for the construction of the database. This provided ~98% nighttime and ~75% daytime areal coverage of Mars planet-wide. Images containing dunes were identified using THV (Interactive THEMIS IR Viewer written in Research Systems Incorporated's (RSI) IDL® software at the USGS in Flagstaff (www.mars-ice.org)). The 100 m/pixel resolution THEMIS IR images were used to locate potential dune features. The higher resolution THEMIS VIS and MOC NA images were used to assign Earth-based dune classifications (McKee, 1979). Where image quality allowed, slipface measurements based on gross dune morphology were digitized to represent primary wind direction responsible for that morphology. Azimuth values were calculated, from crater centroid to dune centroid, for dune fields located within craters. These indicators of wind direction can be compared to the included NASA/Ames Mars general circulation model (GCM) output (Harberle et al., 1999).

Search
Clear search
Close search
Google apps
Main menu