2 datasets found
  1. Data from: Privacy Preserving Outlier Detection through Random Nonlinear...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +2more
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion [Dataset]. https://data.nasa.gov/dataset/privacy-preserving-outlier-detection-through-random-nonlinear-data-distortion
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.

  2. g

    Privacy Preserving Outlier Detection through Random Nonlinear Data...

    • gimi9.com
    Updated Mar 11, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_privacy-preserving-outlier-detection-through-random-nonlinear-data-distortion/
    Explore at:
    Dataset updated
    Mar 11, 2010
    Description

    Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
nasa.gov (2025). Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion [Dataset]. https://data.nasa.gov/dataset/privacy-preserving-outlier-detection-through-random-nonlinear-data-distortion
Organization logo

Data from: Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion

Related Article
Explore at:
Dataset updated
Mar 31, 2025
Dataset provided by
NASAhttp://nasa.gov/
Description

Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.

Search
Clear search
Close search
Google apps
Main menu