Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.11
Python 3.7.2
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-03-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.7:
conda create -n analyses python=3.7
conda activate analyses
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
<code
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourages poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub. Based on the results, we proposed and evaluated Julynter, a linting tool for Jupyter Notebooks.
Papers:
This repository contains three files:
Reproducing the Notebook Study
The db2020-09-22.dump.gz file contains a PostgreSQL dump of the database, with all the data we extracted from notebooks. For loading it, run:
gunzip -c db2020-09-22.dump.gz | psql jupyter
Note that this file contains only the database with the extracted data. The actual repositories are available in a google drive folder, which also contains the docker images we used in the reproducibility study. The repositories are stored as content/{hash_dir1}/{hash_dir2}.tar.bz2, where hash_dir1 and hash_dir2 are columns of repositories in the database.
For scripts, notebooks, and detailed instructions on how to analyze or reproduce the data collection, please check the instructions on the Jupyter Archaeology repository (tag 1.0.0)
The sample.tar.gz file contains the repositories obtained during the manual sampling.
Reproducing the Julynter Experiment
The julynter_reproducility.tar.gz file contains all the data collected in the Julynter experiment and the analysis notebooks. Reproducing the analysis is straightforward:
The collected data is stored in the julynter/data folder.
Changelog
2019/01/14 - Version 1 - Initial version
2019/01/22 - Version 2 - Update N8.Execution.ipynb to calculate the rate of failure for each reason
2019/03/13 - Version 3 - Update package for camera ready. Add columns to db to detect duplicates, change notebooks to consider them, and add N1.Skip.Notebook.ipynb and N11.Repository.With.Notebook.Restriction.ipynb.
2021/03/15 - Version 4 - Add Julynter experiment; Update database dump to include new data collected for the second paper; remove scripts and analysis notebooks from this package (moved to GitHub), add a link to Google Drive with collected repository files
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.11
Python 3.7.2
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-03-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.7:
conda create -n analyses python=3.7
conda activate analyses
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
<code