2 datasets found
  1. e

    Face-domain-specific automatic speech recognition models - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Face-domain-specific automatic speech recognition models - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/71828f6e-6ae9-59f8-8bd8-cc594ff3e760
    Explore at:
    Dataset updated
    Mar 15, 2023
    Description

    This entry contains all the files required to implement face-domain-specific automatic speech recognition (ASR) applications using the Kaldi ASR toolkit (https://github.com/kaldi-asr/kaldi), including the acoustic model, language model, and other relevant files. It also includes all the scripts and configuration files needed to use these models for implementing face-domain-specific automatic speech recognition. The acoustic model was trained using the relevant Kaldi ASR tools (https://github.com/kaldi-asr/kaldi) and the Artur speech corpus (http://hdl.handle.net/11356/1776; http://hdl.handle.net/11356/1772). The language model was trained using the domain-specific text data involving face descriptions obtained by translating the Face2Text English dataset (https://github.com/mtanti/face2text-dataset) into the Slovenian language. These models, combined with other necessary files like the HCLG.fst and decoding scripts, enable the implementation of face-domain-specific ASR applications. Two speech corpora ("test" and "obrazi") and two Kaldi ASR models ("graph_splosni" and "graph_obrazi") can be selected for conducting speech recognition tests by setting the variable "graph" and "test_sets" in the "local/test_recognition.sh" script. Acoustic speech features can be extracted and speech recognition tests can be conducted using the "local/test_recognition.sh" script. Speech recognition test results can be obtained using the "results.sh" script. The KALDI_ROOT environment variable also needs to be set in the script "path.sh" to set the path to the Kaldi ASR toolkit installation folder.

  2. E

    Data from: Face-domain-specific automatic speech recognition models

    • live.european-language-grid.eu
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Face-domain-specific automatic speech recognition models [Dataset]. https://live.european-language-grid.eu/catalogue/tool-service/21516
    Explore at:
    Dataset updated
    Feb 23, 2023
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This entry contains all the files required to implement face-domain-specific automatic speech recognition (ASR) applications using the Kaldi ASR toolkit (https://github.com/kaldi-asr/kaldi), including the acoustic model, language model, and other relevant files. It also includes all the scripts and configuration files needed to use these models for implementing face-domain-specific automatic speech recognition.

    The acoustic model was trained using the relevant Kaldi ASR tools (https://github.com/kaldi-asr/kaldi) and the Artur speech corpus (http://hdl.handle.net/11356/1776; http://hdl.handle.net/11356/1772). The language model was trained using the domain-specific text data involving face descriptions obtained by translating the Face2Text English dataset (https://github.com/mtanti/face2text-dataset) into the Slovenian language. These models, combined with other necessary files like the HCLG.fst and decoding scripts, enable the implementation of face-domain-specific ASR applications.

    Two speech corpora ("test" and "obrazi") and two Kaldi ASR models ("graph_splosni" and "graph_obrazi") can be selected for conducting speech recognition tests by setting the variable "graph" and "test_sets" in the "local/test_recognition.sh" script.

    Acoustic speech features can be extracted and speech recognition tests can be conducted using the "local/test_recognition.sh" script.

    Speech recognition test results can be obtained using the "results.sh" script.

    The KALDI_ROOT environment variable also needs to be set in the script "path.sh" to set the path to the Kaldi ASR toolkit installation folder.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2023). Face-domain-specific automatic speech recognition models - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/71828f6e-6ae9-59f8-8bd8-cc594ff3e760

Face-domain-specific automatic speech recognition models - Dataset - B2FIND

Explore at:
Dataset updated
Mar 15, 2023
Description

This entry contains all the files required to implement face-domain-specific automatic speech recognition (ASR) applications using the Kaldi ASR toolkit (https://github.com/kaldi-asr/kaldi), including the acoustic model, language model, and other relevant files. It also includes all the scripts and configuration files needed to use these models for implementing face-domain-specific automatic speech recognition. The acoustic model was trained using the relevant Kaldi ASR tools (https://github.com/kaldi-asr/kaldi) and the Artur speech corpus (http://hdl.handle.net/11356/1776; http://hdl.handle.net/11356/1772). The language model was trained using the domain-specific text data involving face descriptions obtained by translating the Face2Text English dataset (https://github.com/mtanti/face2text-dataset) into the Slovenian language. These models, combined with other necessary files like the HCLG.fst and decoding scripts, enable the implementation of face-domain-specific ASR applications. Two speech corpora ("test" and "obrazi") and two Kaldi ASR models ("graph_splosni" and "graph_obrazi") can be selected for conducting speech recognition tests by setting the variable "graph" and "test_sets" in the "local/test_recognition.sh" script. Acoustic speech features can be extracted and speech recognition tests can be conducted using the "local/test_recognition.sh" script. Speech recognition test results can be obtained using the "results.sh" script. The KALDI_ROOT environment variable also needs to be set in the script "path.sh" to set the path to the Kaldi ASR toolkit installation folder.

Search
Clear search
Close search
Google apps
Main menu