1 dataset found
  1. r

    GLO climate data stats summary

    • researchdata.edu.au
    • data.gov.au
    • +1more
    Updated May 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2016). GLO climate data stats summary [Dataset]. https://researchdata.edu.au/glo-climate-stats-summary/2992384
    Explore at:
    Dataset updated
    May 6, 2016
    Dataset provided by
    data.gov.au
    Authors
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including

    1. Time series mean annual BAWAP rainfall from 1900 - 2012.

    2. Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month

    3. Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.

    4. Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).

    As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    There are 4 csv files here:

    BAWAP_P_annual_BA_SYB_GLO.csv

    Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

    Source data: annual BILO rainfall

    P_PET_monthly_BA_SYB_GLO.csv

    long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

    Climatology_Trend_BA_SYB_GLO.csv

    Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

    Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

    Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    Dataset History

    Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.

    BAWAP_P_annual_BA_SYB_GLO.csv

    Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

    Source data: annual BILO rainfall

    P_PET_monthly_BA_SYB_GLO.csv

    long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

    Climatology_Trend_BA_SYB_GLO.csv

    Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

    Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

    Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

    Dataset Citation

    Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.

    Dataset Ancestors

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bioregional Assessment Program (2016). GLO climate data stats summary [Dataset]. https://researchdata.edu.au/glo-climate-stats-summary/2992384

GLO climate data stats summary

Explore at:
Dataset updated
May 6, 2016
Dataset provided by
data.gov.au
Authors
Bioregional Assessment Program
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Abstract

The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including

  1. Time series mean annual BAWAP rainfall from 1900 - 2012.

  2. Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month

  3. Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.

  4. Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).

As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

There are 4 csv files here:

BAWAP_P_annual_BA_SYB_GLO.csv

Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

Source data: annual BILO rainfall

P_PET_monthly_BA_SYB_GLO.csv

long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

Climatology_Trend_BA_SYB_GLO.csv

Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

Dataset History

Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.

BAWAP_P_annual_BA_SYB_GLO.csv

Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.

Source data: annual BILO rainfall

P_PET_monthly_BA_SYB_GLO.csv

long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month

Climatology_Trend_BA_SYB_GLO.csv

Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend

Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv

Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).

Dataset Citation

Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.

Dataset Ancestors

Search
Clear search
Close search
Google apps
Main menu