3 datasets found
  1. a

    Deforestation Fronts 2020

    • hub.arcgis.com
    Updated May 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2021). Deforestation Fronts 2020 [Dataset]. https://hub.arcgis.com/datasets/panda::deforestation-fronts-2020-2/explore
    Explore at:
    Dataset updated
    May 21, 2021
    Dataset authored and provided by
    World Wide Fund for Nature
    Area covered
    Description

    WWF developed a global analysis of the world's most important deforestation areas or deforestation fronts in 2015. This assessment was revised in 2020 as part of the WWF Deforestation Fronts Report.WFS for data download (Working with Web Feature Service (WFS)): https://maps.globilportal.org/server/services/Forests/Deforestation_Trends_Hotspots_Fronts/MapServer/WFSServerAn Emerging Hotspot Analysis was used to derive deforestation fronts using the ArcGIS Emerging Hot Spot Analysis tool. This analysis was undertaken in 10km² hexagons, within country boundaries, based on the remote sensing data series from Terra-i data for Latin America, Africa, Asia and Oceania for the period from 2004 to 2017 for which validated data was available. Locations with the highest incidence of deforestation were selected in the tropical and subtropical biomes in each country. Following the hotspot analysis, a visual interpretation of the spatial clustering of deforestation hotspots in the selected biomes by country was conducted in order to delineate the boundaries of deforestation fronts, which comprise all countries in which deforestation hotspots were detected. Deforestation fronts are places that contain an important area of remaining forests where there is a relatively larger spatial concentration or clustering of deforestation hotspots (measured in 10km2 hexagons). As a result of this exercise, based on the Terra-i data, 30 countries were retained in the analysis.

  2. a

    Global Deforestation Trends and Hotspots

    • hub.arcgis.com
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2020). Global Deforestation Trends and Hotspots [Dataset]. https://hub.arcgis.com/maps/28ccef7736f0400ba348b831e86052ac
    Explore at:
    Dataset updated
    Apr 17, 2020
    Dataset authored and provided by
    World Wide Fund for Nature
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    WWF developed a global analysis of the world's most important deforestation areas or deforestation fronts in 2015. This assessment was revised in 2020 as part of the WWF Deforestation Fronts Report.Emerging Hotspots analysisThe goal of this analysis was to assess the presence of deforestation fronts: areas where deforestation is significantly increasing and is threatening remaining forests. We selected the emerging hotspots analysis to assess spatio-temporal trends of deforestation in the pan-tropics.Spatial UnitWe selected hexagons as the spatial unit for the hotspots analysis for several reasons. They have a low perimeter-to-area ratio, straightforward neighbor relationships, and reduced distortion due to curvature of the earth. For the hexagon size we decided on a unit of 1,000 ha, based on the resolution of the deforestation data (250m) meant that we could aggregate several deforestation events inside units over time. Hexagons that are closer to or equal to the size of a deforestation event means there could only be one event before the forest is gone and limit statistical analysis.We processed over 13 million hexagons for this analysis and limited the emerging hotspots analysis to only hexagons with at least 15% forest cover remaining (from the all-evidence forest map). This prevented including hotspots in agricultural areas or where all forest has been converted.OutputsThis analysis uses the Getis-Ord and Mann-Kendall statistics to identify spatial clusters of deforestation which have a non-parametric significant trend across a time series. The spatial clusters are defined by the spatial unit and a temporal neighborhood parameter. We use a neighborhood parameter of 5km to include spatial neighbors in the hotspots assessment and time slices for each country described below. Deforestation events are summarized by a spatial unit (hexagons described below) and the results comprise a trends assessment which defines increasing or decreasing deforestation in the units determined at 3 different confidence intervals (90%, 95% and 99%) and the spatio-temporal analysis classifying areas into 8 hot unique or cold spot categories. Our analysis identified 7 hotspot categories:Hotspot TypeDefinitionNewA location with a statistically significant increasing hotspots only in the final time stepConsecutiveAn uninterrupted run of statistically significant hotspot in the final time-steps IntensifyingA statistically significant hotspot for >90% of the bins, including the final time stepPersistentA statistically significant hotspot for >90% of the bins with no upward or downward trend in clustering intensityDiminishingA statistically significant hotspot for >90% of the time steps, with where the clustering is decreasing, or the most recent time step is not hot.SporadicA on-again then off-again hotspot where <90% of the time-step intervals have been statistically significant hot spots and none have been statistically significant cold spots.HistoricalAt least ninety percent of the time-step intervals have been statistically significant hot spots, with the exception of the final time steps..For the evaluation of spatio-temporal trends of tropical deforestation we selected the Terra-i deforestation dataset to define the temporal deforestation patterns. Terra-i is a freely available monitoring system derived from the analysis of MODIS (NVDI) and TRMM (rainfall) data which are used to assess forest cover changes due to anthropic interventions at a 250 m resolution [ref]. It was first developed for Latin American countries in 2012, and then expanded to pan-tropical countries around the world. Terra-i has generated maps of vegetation loss every 16 days, since January 2004. This relatively high temporal resolution of twice monthly observations allows for a more detailed emerging hotspots analysis, increasing the number of time steps or bins available for assessing spatio-temporal patterns relative to annual datasets. Next, the spatial resolution of 250m is more relevant for detecting forest loss than changes in individual tree cover or canopies and is better adapted to process trends on large scales. Finally, the added value of the Terra-i algorithm is that it employs an additional neural network machine learning to identify vegetation loss that is due to anthropic causes as opposed to natural events or other causes. Our dataset comprised all Terra-i deforestation events observed between 2004 and 2017. Temporal unitThe temporal unit or time slice was selected for each country according to the distribution of data. The deforestation data comprised 16-day periods between 2004 and 2017 for a total of 312 potential observation time periods. These were aggregated to time bins to overcome any seasonality in the detection of deforestation events (due to clouds). The temporal unit is combined with the spatial parameter (i.e. 5km) to create the space-time bins for hotspot analysis. For dense time series or countries with a lot of deforestation events (i.e. Brazil) a smaller time slice was used (i.e. 3 months, n=54) with a neighborhood interval of 8 months, meaning that the previous year and next year together were combined to assess statistical trends relative to the global variables together. The rule we employed was that the time slice x neighborhood interval was equal to 24 months, or 2 years, in order to look at general trends over the entire time period and prevent the hotspots analysis from being biased to short time intervals of a few months.Deforestation FrontsFinally, using trends and hotpots we identify 24 major deforestation fronts, areas of significantly increasing deforestation and the focus of WWF's call for action to slow deforestation.

  3. a

    Global Hotspots

    • hub.arcgis.com
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2020). Global Hotspots [Dataset]. https://hub.arcgis.com/maps/panda::global-hotspots
    Explore at:
    Dataset updated
    Apr 17, 2020
    Dataset authored and provided by
    World Wide Fund for Nature
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    WWF developed a global analysis of the world's most important deforestation areas or deforestation fronts in 2015. This assessment was revised in 2020 as part of the WWF Deforestation Fronts Report.Emerging Hotspots analysisThe goal of this analysis was to assess the presence of deforestation fronts: areas where deforestation is significantly increasing and is threatening remaining forests. We selected the emerging hotspots analysis to assess spatio-temporal trends of deforestation in the pan-tropics.Spatial UnitWe selected hexagons as the spatial unit for the hotspots analysis for several reasons. They have a low perimeter-to-area ratio, straightforward neighbor relationships, and reduced distortion due to curvature of the earth. For the hexagon size we decided on a unit of 1,000 ha, based on the resolution of the deforestation data (250m) meant that we could aggregate several deforestation events inside units over time. Hexagons that are closer to or equal to the size of a deforestation event means there could only be one event before the forest is gone and limit statistical analysis.We processed over 13 million hexagons for this analysis and limited the emerging hotspots analysis to only hexagons with at least 15% forest cover remaining (from the all-evidence forest map). This prevented including hotspots in agricultural areas or where all forest has been converted.OutputsThis analysis uses the Getis-Ord and Mann-Kendall statistics to identify spatial clusters of deforestation which have a non-parametric significant trend across a time series. The spatial clusters are defined by the spatial unit and a temporal neighborhood parameter. We use a neighborhood parameter of 5km to include spatial neighbors in the hotspots assessment and time slices for each country described below. Deforestation events are summarized by a spatial unit (hexagons described below) and the results comprise a trends assessment which defines increasing or decreasing deforestation in the units determined at 3 different confidence intervals (90%, 95% and 99%) and the spatio-temporal analysis classifying areas into 8 hot unique or cold spot categories. Our analysis identified 7 hotspot categories:Hotspot TypeDefinitionNewA location with a statistically significant increasing hotspots only in the final time stepConsecutiveAn uninterrupted run of statistically significant hotspot in the final time-steps IntensifyingA statistically significant hotspot for >90% of the bins, including the final time stepPersistentA statistically significant hotspot for >90% of the bins with no upward or downward trend in clustering intensityDiminishingA statistically significant hotspot for >90% of the time steps, with where the clustering is decreasing, or the most recent time step is not hot.SporadicA on-again then off-again hotspot where <90% of the time-step intervals have been statistically significant hot spots and none have been statistically significant cold spots.HistoricalAt least ninety percent of the time-step intervals have been statistically significant hot spots, with the exception of the final time steps..For the evaluation of spatio-temporal trends of tropical deforestation we selected the Terra-i deforestation dataset to define the temporal deforestation patterns. Terra-i is a freely available monitoring system derived from the analysis of MODIS (NVDI) and TRMM (rainfall) data which are used to assess forest cover changes due to anthropic interventions at a 250 m resolution [ref]. It was first developed for Latin American countries in 2012, and then expanded to pan-tropical countries around the world. Terra-i has generated maps of vegetation loss every 16 days, since January 2004. This relatively high temporal resolution of twice monthly observations allows for a more detailed emerging hotspots analysis, increasing the number of time steps or bins available for assessing spatio-temporal patterns relative to annual datasets. Next, the spatial resolution of 250m is more relevant for detecting forest loss than changes in individual tree cover or canopies and is better adapted to process trends on large scales. Finally, the added value of the Terra-i algorithm is that it employs an additional neural network machine learning to identify vegetation loss that is due to anthropic causes as opposed to natural events or other causes. Our dataset comprised all Terra-i deforestation events observed between 2004 and 2017. Temporal unitThe temporal unit or time slice was selected for each country according to the distribution of data. The deforestation data comprised 16-day periods between 2004 and 2017 for a total of 312 potential observation time periods. These were aggregated to time bins to overcome any seasonality in the detection of deforestation events (due to clouds). The temporal unit is combined with the spatial parameter (i.e. 5km) to create the space-time bins for hotspot analysis. For dense time series or countries with a lot of deforestation events (i.e. Brazil) a smaller time slice was used (i.e. 3 months, n=54) with a neighborhood interval of 8 months, meaning that the previous year and next year together were combined to assess statistical trends relative to the global variables together. The rule we employed was that the time slice x neighborhood interval was equal to 24 months, or 2 years, in order to look at general trends over the entire time period and prevent the hotspots analysis from being biased to short time intervals of a few months.Deforestation FrontsFinally, using trends and hotpots we identify 24 major deforestation fronts, areas of significantly increasing deforestation and the focus of WWF's call for action to slow deforestation.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
World Wide Fund for Nature (2021). Deforestation Fronts 2020 [Dataset]. https://hub.arcgis.com/datasets/panda::deforestation-fronts-2020-2/explore

Deforestation Fronts 2020

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 21, 2021
Dataset authored and provided by
World Wide Fund for Nature
Area covered
Description

WWF developed a global analysis of the world's most important deforestation areas or deforestation fronts in 2015. This assessment was revised in 2020 as part of the WWF Deforestation Fronts Report.WFS for data download (Working with Web Feature Service (WFS)): https://maps.globilportal.org/server/services/Forests/Deforestation_Trends_Hotspots_Fronts/MapServer/WFSServerAn Emerging Hotspot Analysis was used to derive deforestation fronts using the ArcGIS Emerging Hot Spot Analysis tool. This analysis was undertaken in 10km² hexagons, within country boundaries, based on the remote sensing data series from Terra-i data for Latin America, Africa, Asia and Oceania for the period from 2004 to 2017 for which validated data was available. Locations with the highest incidence of deforestation were selected in the tropical and subtropical biomes in each country. Following the hotspot analysis, a visual interpretation of the spatial clustering of deforestation hotspots in the selected biomes by country was conducted in order to delineate the boundaries of deforestation fronts, which comprise all countries in which deforestation hotspots were detected. Deforestation fronts are places that contain an important area of remaining forests where there is a relatively larger spatial concentration or clustering of deforestation hotspots (measured in 10km2 hexagons). As a result of this exercise, based on the Terra-i data, 30 countries were retained in the analysis.

Search
Clear search
Close search
Google apps
Main menu