HPC-ODA is a collection of datasets acquired on production HPC systems, which are representative of several real-world use cases in the field of Operational Data Analytics (ODA) for the improvement of reliability and energy efficiency. The datasets are composed of monitoring sensor data, acquired from the components of different HPC systems depending on the specific use case. Two tools, whose overhead is proven to be very light, were used to acquire data in HPC-ODA: these are the DCDB and LDMS monitoring frameworks. The aim of HPC-ODA is to provide several vertical slices (here named segments) of the monitoring data available in a large-scale HPC installation. The segments all have different granularities, in terms of data sources and time scale, and provide several use cases on which models and approaches to data processing can be evaluated. While having a production dataset from a whole HPC system - from the infrastructure down to the CPU core level - at a fine time granularity would be ideal, this is often not feasible due to the confidentiality of the data, as well as the sheer amount of storage space required. HPC-ODA includes 6 different segments: Power Consumption Prediction: a fine-granularity dataset that was collected from a single compute node in a HPC system. It contains both node-level data as well as per-CPU core metrics, and can be used to perform regression tasks such as power consumption prediction. Fault Detection: a medium-granularity dataset that was collected from a single compute node while it was subjected to fault injection. It contains only node-level data, as well as the labels for both the applications and faults being executed on the HPC node in time. This dataset can be used to perform fault classification. Application Classification: a medium-granularity dataset that was collected from 16 compute nodes in a HPC system while running different parallel MPI applications. Data is at the compute node level, separated for each of them, and is paired with the labels of the applications being executed. This dataset can be used for tasks such as application classification. Infrastructure Management: a coarse-granularity dataset containing cluster-wide data from a HPC system, about its warm water cooling system as well as power consumption. The data is at the rack level, and can be used for regression tasks such as outlet water temperature or removed heat prediction. Cross-architecture: a medium-granularity dataset that is a variant of the Application Classification one, and shares the same ODA use case. Here, however, single-node configurations of the applications were executed on three different compute node types with different CPU architectures. This dataset can be used to perform cross-architecture application classification, or performance comparison studies. DEEP-EST Dataset: this medium-granularity dataset was collected on the modular DEEP-EST HPC system and consists of three parts.These were collected on 16 compute nodes each, while running several MPI applications under different warm-water cooling configurations. This dataset can be used for CPU and GPU temperature prediction, or for thermal characterization. The HPC-ODA dataset collection includes a readme document containing all necessary usage information, as well as a lightweight Python framework to carry out the ODA tasks described for each dataset. If you are using HPC-ODA for your research work please cite the following paper, in which it was originally introduced: Netti, A., Tafani, D., Ott, M., & Schulz, M. (2021). Correlation-wise Smoothing: Lightweight Knowledge Extraction for HPC Monitoring Data. Proceedings of the 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HPC-ODA is a collection of datasets acquired on production HPC systems, which are representative of several real-world use cases in the field of Operational Data Analytics (ODA) for the improvement of reliability and energy efficiency. The datasets are composed of monitoring sensor data, acquired from the components of different HPC systems depending on the specific use case. Two tools, whose overhead is proven to be very light, were used to acquire data in HPC-ODA: these are the DCDB and LDMS monitoring frameworks. The aim of HPC-ODA is to provide several vertical slices (here named segments) of the monitoring data available in a large-scale HPC installation. The segments all have different granularities, in terms of data sources and time scale, and provide several use cases on which models and approaches to data processing can be evaluated. While having a production dataset from a whole HPC system - from the infrastructure down to the CPU core level - at a fine time granularity would be ideal, this is often not feasible due to the confidentiality of the data, as well as the sheer amount of storage space required. HPC-ODA includes 5 different segments: Power Consumption Prediction: a fine-granularity dataset that was collected from a single compute node in a HPC system. It contains both node-level data as well as per-CPU core metrics, and can be used to perform regression tasks such as power consumption prediction. Fault Detection: a medium-granularity dataset that was collected from a single compute node while it was subjected to fault injection. It contains only node-level data, as well as the labels for both the applications and faults being executed on the HPC node in time. This dataset can be used to perform fault classification. Application Classification: a medium-granularity dataset that was collected from 16 compute nodes in a HPC system while running different parallel MPI applications. Data is at the compute node level, separated for each of them, and is paired with the labels of the applications being executed. This dataset can be used for tasks such as application classification. Infrastructure Management: a coarse-granularity dataset containing cluster-wide data from a HPC system, about its warm water cooling system as well as power consumption. The data is at the rack level, and can be used for regression tasks such as outlet water temperature or removed heat prediction. Cross-architecture: a medium-granularity dataset that is a variant of the Application Classification one, and shares the same ODA use case. Here, however, single-node configurations of the applications were executed on three different compute node types with different CPU architectures. This dataset can be used to perform cross-architecture application classification, or performance comparison studies. The HPC-ODA dataset collection includes a readme document containing all necessary usage information, as well as a lightweight Python framework to carry out the ODA tasks described for each dataset.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
HPC-ODA is a collection of datasets acquired on production HPC systems, which are representative of several real-world use cases in the field of Operational Data Analytics (ODA) for the improvement of reliability and energy efficiency. The datasets are composed of monitoring sensor data, acquired from the components of different HPC systems depending on the specific use case. Two tools, whose overhead is proven to be very light, were used to acquire data in HPC-ODA: these are the DCDB and LDMS monitoring frameworks. The aim of HPC-ODA is to provide several vertical slices (here named segments) of the monitoring data available in a large-scale HPC installation. The segments all have different granularities, in terms of data sources and time scale, and provide several use cases on which models and approaches to data processing can be evaluated. While having a production dataset from a whole HPC system - from the infrastructure down to the CPU core level - at a fine time granularity would be ideal, this is often not feasible due to the confidentiality of the data, as well as the sheer amount of storage space required. HPC-ODA includes 6 different segments: Power Consumption Prediction: a fine-granularity dataset that was collected from a single compute node in a HPC system. It contains both node-level data as well as per-CPU core metrics, and can be used to perform regression tasks such as power consumption prediction. Fault Detection: a medium-granularity dataset that was collected from a single compute node while it was subjected to fault injection. It contains only node-level data, as well as the labels for both the applications and faults being executed on the HPC node in time. This dataset can be used to perform fault classification. Application Classification: a medium-granularity dataset that was collected from 16 compute nodes in a HPC system while running different parallel MPI applications. Data is at the compute node level, separated for each of them, and is paired with the labels of the applications being executed. This dataset can be used for tasks such as application classification. Infrastructure Management: a coarse-granularity dataset containing cluster-wide data from a HPC system, about its warm water cooling system as well as power consumption. The data is at the rack level, and can be used for regression tasks such as outlet water temperature or removed heat prediction. Cross-architecture: a medium-granularity dataset that is a variant of the Application Classification one, and shares the same ODA use case. Here, however, single-node configurations of the applications were executed on three different compute node types with different CPU architectures. This dataset can be used to perform cross-architecture application classification, or performance comparison studies. DEEP-EST Dataset: this medium-granularity dataset was collected on the modular DEEP-EST HPC system and consists of three parts.These were collected on 16 compute nodes each, while running several MPI applications under different warm-water cooling configurations. This dataset can be used for CPU and GPU temperature prediction, or for thermal characterization. The HPC-ODA dataset collection includes a readme document containing all necessary usage information, as well as a lightweight Python framework to carry out the ODA tasks described for each dataset. If you are using HPC-ODA for your research work please cite the following paper, in which it was originally introduced: Netti, A., Tafani, D., Ott, M., & Schulz, M. (2021). Correlation-wise Smoothing: Lightweight Knowledge Extraction for HPC Monitoring Data. Proceedings of the 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE.