1 dataset found
  1. High Resolution Land Cover Classification - USA

    • ai-climate-hackathon-global-community.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Dec 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). High Resolution Land Cover Classification - USA [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/content/a10f46a8071a4318bcc085dae26d7ee4
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band high-resolution (80 - 100 cm) imagery.OutputClassified raster with the same classes as in the Chesapeake Bay Landcover dataset (2013/2014). By default, the output raster contains 9 classes. A simpler classification with 6 classes can be performed by setting the the 'detailed_classes' model argument to false.Note: The output classified raster will not contain 'Aberdeen Proving Ground' class. Find class descriptions here.Applicable geographiesThis model is applicable in the United States and is expected to produce best results in the Chesapeake Bay Region.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 86.5% for classification into 9 land cover classes and 87.86% for 6 classes. The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 9 land cover classes:ClassPrecisionRecallF1 ScoreWater0.936140.930460.93329Wetlands0.816590.759050.78677Tree Canopy0.904770.931430.91791Shrubland0.516250.186430.27394Low Vegetation0.859770.866760.86325Barren0.671650.509220.57927Structures0.80510.848870.82641Impervious Surfaces0.735320.685560.70957Impervious Roads0.762810.812380.78682The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 6 land cover classes: ClassPrecisionRecallF1 ScoreWater0.950.940.95Tree Canopy and Shrubs0.910.920.92Low Vegetation0.850.850.85Barren0.790.690.74Impervious Surfaces0.840.840.84Impervious Roads0.820.830.82Training dataThis model has been trained on the Chesapeake Bay high-resolution 2013/2014 NAIP Landcover dataset (produced by Chesapeake Conservancy with their partners University of Vermont Spatial Analysis Lab (UVM SAL), and Worldview Solutions, Inc. (WSI)) and other high resolution imagery. Find more information about the dataset here.Sample resultsHere are a few results from the model.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2021). High Resolution Land Cover Classification - USA [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/content/a10f46a8071a4318bcc085dae26d7ee4
Organization logo

High Resolution Land Cover Classification - USA

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 8, 2021
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
United States
Description

Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics and can produce superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.Input8-bit, 3-band high-resolution (80 - 100 cm) imagery.OutputClassified raster with the same classes as in the Chesapeake Bay Landcover dataset (2013/2014). By default, the output raster contains 9 classes. A simpler classification with 6 classes can be performed by setting the the 'detailed_classes' model argument to false.Note: The output classified raster will not contain 'Aberdeen Proving Ground' class. Find class descriptions here.Applicable geographiesThis model is applicable in the United States and is expected to produce best results in the Chesapeake Bay Region.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 86.5% for classification into 9 land cover classes and 87.86% for 6 classes. The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 9 land cover classes:ClassPrecisionRecallF1 ScoreWater0.936140.930460.93329Wetlands0.816590.759050.78677Tree Canopy0.904770.931430.91791Shrubland0.516250.186430.27394Low Vegetation0.859770.866760.86325Barren0.671650.509220.57927Structures0.80510.848870.82641Impervious Surfaces0.735320.685560.70957Impervious Roads0.762810.812380.78682The table below summarizes the precision, recall and F1-score of the model on the validation dataset, for classification into 6 land cover classes: ClassPrecisionRecallF1 ScoreWater0.950.940.95Tree Canopy and Shrubs0.910.920.92Low Vegetation0.850.850.85Barren0.790.690.74Impervious Surfaces0.840.840.84Impervious Roads0.820.830.82Training dataThis model has been trained on the Chesapeake Bay high-resolution 2013/2014 NAIP Landcover dataset (produced by Chesapeake Conservancy with their partners University of Vermont Spatial Analysis Lab (UVM SAL), and Worldview Solutions, Inc. (WSI)) and other high resolution imagery. Find more information about the dataset here.Sample resultsHere are a few results from the model.

Search
Clear search
Close search
Google apps
Main menu