2 datasets found
  1. Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data

    • catalog.data.gov
    • data.wu.ac.at
    Updated May 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data [Dataset]. https://catalog.data.gov/dataset/judson-mansouri-automated-chemical-curation-qsarenvres-data
    Explore at:
    Dataset updated
    May 2, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Here we describe the development of an automated KNIME workflow to curate and correct errors in the structure and identity of chemicals using the publically available PHYSPROP physico-chemical properties and environmental fate datasets. The workflow first assembles structure-identity pairs using up to four provided chemical identifiers, including chemical name, CASRNs, SMILES, and MolBlock. Problems detected included errors and mismatches in chemical structure formats, identifiers, and various structure validation issues, including hypervalency and stereochemistry descriptions. Subsequently, a machine learning procedure was applied to evaluate the impact of this curation process. The performance of QSAR models built on only the highest quality subset of the original dataset was compared to the larger curated and corrected data set. The latter showed statistically improved predictive performance. The final workflow was used to curate the full list of PHYSPROP datasets, and is being made publically available for further usage and integration by the scientific community. This dataset is associated with the following publication: Mansouri, K., C. Grulke, A. Richard, R. Judson, and A. Williams. (SAR AND QSAR IN ENVIRONMENTAL RESEARCH) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modeling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH. Taylor & Francis, Inc., Philadelphia, PA, USA, 27(11): 911-937, (2016).

  2. d

    Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data.

    • datadiscoverystudio.org
    Updated Oct 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e1b0f413e48648e89c921b4bbe8f3a4a/html
    Explore at:
    Dataset updated
    Oct 3, 2017
    Description

    description: Here we describe the development of an automated KNIME workflow to curate and correct errors in the structure and identity of chemicals using the publically available PHYSPROP physico-chemical properties and environmental fate datasets. The workflow first assembles structure-identity pairs using up to four provided chemical identifiers, including chemical name, CASRNs, SMILES, and MolBlock. Problems detected included errors and mismatches in chemical structure formats, identifiers, and various structure validation issues, including hypervalency and stereochemistry descriptions. Subsequently, a machine learning procedure was applied to evaluate the impact of this curation process. The performance of QSAR models built on only the highest quality subset of the original dataset was compared to the larger curated and corrected data set. The latter showed statistically improved predictive performance. The final workflow was used to curate the full list of PHYSPROP datasets, and is being made publically available for further usage and integration by the scientific community. This dataset is associated with the following publication: Mansouri, K., C. Grulke, A. Richard, R. Judson, and A. Williams. (SAR AND QSAR IN ENVIRONMENTAL RESEARCH) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modeling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH. Taylor & Francis, Inc., Philadelphia, PA, USA, 27(11): 911-937, (2016).; abstract: Here we describe the development of an automated KNIME workflow to curate and correct errors in the structure and identity of chemicals using the publically available PHYSPROP physico-chemical properties and environmental fate datasets. The workflow first assembles structure-identity pairs using up to four provided chemical identifiers, including chemical name, CASRNs, SMILES, and MolBlock. Problems detected included errors and mismatches in chemical structure formats, identifiers, and various structure validation issues, including hypervalency and stereochemistry descriptions. Subsequently, a machine learning procedure was applied to evaluate the impact of this curation process. The performance of QSAR models built on only the highest quality subset of the original dataset was compared to the larger curated and corrected data set. The latter showed statistically improved predictive performance. The final workflow was used to curate the full list of PHYSPROP datasets, and is being made publically available for further usage and integration by the scientific community. This dataset is associated with the following publication: Mansouri, K., C. Grulke, A. Richard, R. Judson, and A. Williams. (SAR AND QSAR IN ENVIRONMENTAL RESEARCH) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modeling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH. Taylor & Francis, Inc., Philadelphia, PA, USA, 27(11): 911-937, (2016).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2021). Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data [Dataset]. https://catalog.data.gov/dataset/judson-mansouri-automated-chemical-curation-qsarenvres-data
Organization logo

Judson_Mansouri_Automated_Chemical_Curation_QSAREnvRes_Data

Explore at:
Dataset updated
May 2, 2021
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

Here we describe the development of an automated KNIME workflow to curate and correct errors in the structure and identity of chemicals using the publically available PHYSPROP physico-chemical properties and environmental fate datasets. The workflow first assembles structure-identity pairs using up to four provided chemical identifiers, including chemical name, CASRNs, SMILES, and MolBlock. Problems detected included errors and mismatches in chemical structure formats, identifiers, and various structure validation issues, including hypervalency and stereochemistry descriptions. Subsequently, a machine learning procedure was applied to evaluate the impact of this curation process. The performance of QSAR models built on only the highest quality subset of the original dataset was compared to the larger curated and corrected data set. The latter showed statistically improved predictive performance. The final workflow was used to curate the full list of PHYSPROP datasets, and is being made publically available for further usage and integration by the scientific community. This dataset is associated with the following publication: Mansouri, K., C. Grulke, A. Richard, R. Judson, and A. Williams. (SAR AND QSAR IN ENVIRONMENTAL RESEARCH) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modeling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH. Taylor & Francis, Inc., Philadelphia, PA, USA, 27(11): 911-937, (2016).

Search
Clear search
Close search
Google apps
Main menu