3 datasets found
  1. d

    LANDFIRE Remap Annual Disturbance CONUS 2015

    • datasets.ai
    • s.cnmilf.com
    • +1more
    55
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior, LANDFIRE Remap Annual Disturbance CONUS 2015 [Dataset]. https://datasets.ai/datasets/landfire-remap-annual-disturbance-conus-2015
    Explore at:
    55Available download formats
    Dataset authored and provided by
    Department of the Interior
    Description

    LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat7 SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.

  2. d

    LANDFIRE 2016 Remap Annual Disturbance AK 2015

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). LANDFIRE 2016 Remap Annual Disturbance AK 2015 [Dataset]. https://catalog.data.gov/dataset/landfire-2016-remap-annual-disturbance-ak-2015
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.

  3. d

    LANDFIRE Remap Annual Disturbance HI 2015

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). LANDFIRE Remap Annual Disturbance HI 2015 [Dataset]. https://catalog.data.gov/dataset/landfire-remap-annual-disturbance-hi-2015
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat7 SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of the Interior, LANDFIRE Remap Annual Disturbance CONUS 2015 [Dataset]. https://datasets.ai/datasets/landfire-remap-annual-disturbance-conus-2015

LANDFIRE Remap Annual Disturbance CONUS 2015

Explore at:
55Available download formats
Dataset authored and provided by
Department of the Interior
Description

LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat7 SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.

Search
Clear search
Close search
Google apps
Main menu