2 datasets found
  1. c

    LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Adaptation Science Centers (2024). LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/lean-corrected-san-francisco-bay-digital-elevation-model-2018
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Climate Adaptation Science Centers
    Area covered
    San Francisco Bay, San Francisco
    Description

    Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA Sea-Level Rise Viewer DEM to create a new seamless DEM for the San Francisco Bay. Across all GPS points, mean initial lidar error was 22.8 cm (SD=12.0) and root-mean squared error (RMSE) was 25.8 cm. After correction with LEAN, mean error was 0 (SD=0.07) and RMSE was 7.4 cm. References: Buffington, K.J., Dugger, B.D., Thorne, K.M. and Takekawa, J.Y., 2016. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sensing of Environment, 186, pp.616-625.

  2. g

    LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018 | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_lean-corrected-san-francisco-bay-digital-elevation-model-2018-0256c
    Explore at:
    Area covered
    San Francisco Bay, San Francisco
    Description

    Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA Sea-Level Rise Viewer DEM to create a new seamless DEM for the San Francisco Bay. Across all GPS points, mean initial lidar error was 22.8 cm (SD=12.0) and root-mean squared error (RMSE) was 25.8 cm. After correction with LEAN, mean error was 0 (SD=0.07) and RMSE was 7.4 cm. References: Buffington, K.J., Dugger, B.D., Thorne, K.M. and Takekawa, J.Y., 2016. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sensing of Environment, 186, pp.616-625.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Climate Adaptation Science Centers (2024). LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/lean-corrected-san-francisco-bay-digital-elevation-model-2018

LEAN-Corrected San Francisco Bay Digital Elevation Model, 2018

Explore at:
Dataset updated
Jun 15, 2024
Dataset provided by
Climate Adaptation Science Centers
Area covered
San Francisco Bay, San Francisco
Description

Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA Sea-Level Rise Viewer DEM to create a new seamless DEM for the San Francisco Bay. Across all GPS points, mean initial lidar error was 22.8 cm (SD=12.0) and root-mean squared error (RMSE) was 25.8 cm. After correction with LEAN, mean error was 0 (SD=0.07) and RMSE was 7.4 cm. References: Buffington, K.J., Dugger, B.D., Thorne, K.M. and Takekawa, J.Y., 2016. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sensing of Environment, 186, pp.616-625.

Search
Clear search
Close search
Google apps
Main menu