Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel based tool was developed to analyze means-end chain data. The tool consists of a user manual, a data input file to correctly organise your MEC data, a calculator file to analyse your data, and instructional videos. The purpose of this tool is to aggregate laddering data into hierarchical value maps showing means-end chains. The summarized results consist of (1) a summary overview, (2) a matrix, and (3) output for copy/pasting into NodeXL to generate hierarchal value maps (HVMs). To use this tool, you must have collected data via laddering interviews. Ladders are codes linked together consisting of attributes, consequences and values (ACVs).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel based tool was developed to analyze means-end chain data. The tool consists of a user manual, a calculator file for analyzing your data, and instructional videos.
The purpose of this tool is to aggregate laddering data into hierarchical value maps showing means-end chains. The summarized results consist of (1) a summary overview,
(2) a matrix, and (3) output for copy/pasting into NodeXL to generate hierarchal value maps (HVMs). To use this tool, you must have collected data via laddering interviews. Ladders are codes linked together consisting of attributes, consequences and values (ACVs).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel based tool was developed to analyze means-end chain data. The tool consists of a user manual, a data input file to correctly organise your MEC data, a calculator file to analyse your data, and instructional videos. The purpose of this tool is to aggregate laddering data into hierarchical value maps showing means-end chains. The summarized results consist of (1) a summary overview, (2) a matrix, and (3) output for copy/pasting into NodeXL to generate hierarchal value maps (HVMs). To use this tool, you must have collected data via laddering interviews. Ladders are codes linked together consisting of attributes, consequences and values (ACVs).