As part of the Maine Beach Mapping Program (MBMAP), MGS surveys annual alongshore shoreline positions (see Beach_Mapping_Shorelines). Using these shoreline positions and guidance from the USGS Digital Shoreline Analysis System (DSAS). DSAS is referenced as Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan, 2009, Digital Shoreline Analysis System (DSAS) version 4.0— An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. For more information on DSAS and the methodology DSAS employs, please see: https://woodshole.er.usgs.gov/project-pages/DSAS/. The supporting DSAS User Guide which describes how DSAS works and how statistics are calculated is available here: http://www.maine.gov/dacf/mgs/hazards/beach_mapping/DSAS_manual.pdf. MGS wrote a database procedure following protocols outlined in DSAS that allows for the calculation of different shoreline change rates and supporting statistics. This was done so that MGS no longer needed to depend on USGS updates to the DSAS software to keep current with ArcGIS software updates. The script casts shoreline-perpendicular transects at a set spacing (in this case, 10-m intervals along the shoreline), from a preset baseline (located landward of the monitored shorelines), and calculates a range of shoreline change statistics, including: Process Time: The time when the statistics were calculated. TransectID: The ID of the transect (including the group or line section ID; for example, 1-1, is line 1, transect 1) SCE: Shoreline Change Envelope. The distance, in meters, between the shoreline farthest from and closests to the baseline at each transect. NSM: Net Shoreline Movement. The distance, in meters, between the oldest and youngest shorelines for each tranect. EPR: End Point Rate. A shoreline change rate, in meters/year, calculated by dividing the NSM by the time elapsed between the oldest and youngest shorelines at each transect. LRR: Linear Regression Rate. A shoreline change rate, in meters/year, calculated by fitting a least-squares regression line to all of the shoreline points for a particular transect. The distance from the baseline, in meters, is plotted against the shoreline date, and slope of the line that provides the best fit is the LRR. LR2: The R-squared statistic, or coefficient of determination. The percentage of variance in the data that is explained by a regression, or in this case, the LRR value. It is a dimensionless index that ranges from 1.0 (a perfect fit, with the best fit line explaining all variation) to 0.0 (a bad fit, with the best fit line explaining little to no variation) and measures how successfully the best fit line (LRR) accounts for variation in the data. LCI95: Standard error of the slope at the 95% confidence interval. Calculated by muliplying the standard error, or standard deviation, of the slope by the two-tailed test statistic at the user-specified confidence percentage. For example if a reported LRR is 1.34 m/yr and a calculated LCI95 is 0.50, the band of confidence around the LRR is +/- 0.50. In other words, you can be 95% confidence that the true rate of change is between 0.84 and 1.84 m/yr. LRR_ft: The Linear Regression Rate, converted to feet/year. LCI95_ft: The LCI95, converted to feet. EPR_ft: The End Point Rate converted to feet.
As part of the Maine Beach Mapping Program (MBMAP), MGS surveys annual alongshore shoreline positions (see Beach_Mapping_Shorelines). Using these shoreline positions and guidance from the USGS Digital Shoreline Analysis System (DSAS). DSAS is referenced as Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan, 2009, Digital Shoreline Analysis System (DSAS) version 4.0— An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. For more information on DSAS and the methodology DSAS employs, please see: https://woodshole.er.usgs.gov/project-pages/DSAS/. The supporting DSAS User Guide which describes how DSAS works and how statistics are calculated is available here: http://www.maine.gov/dacf/mgs/hazards/beach_mapping/DSAS_manual.pdf. MGS wrote a database procedure following protocols outlined in DSAS that allows for the calculation of different shoreline change rates and supporting statistics. This was done so that MGS no longer needed to depend on USGS updates to the DSAS software to keep current with ArcGIS software updates. The script casts shoreline-perpendicular transects at a set spacing (in this case, 10-m intervals along the shoreline), from a preset baseline (located landward of the monitored shorelines), and calculates a range of shoreline change statistics, including: Process Time: The time when the statistics were calculated. TransectID: The ID of the transect (including the group or line section ID; for example, 1-1, is line 1, transect 1) SCE: Shoreline Change Envelope. The distance, in meters, between the shoreline farthest from and closests to the baseline at each transect. NSM: Net Shoreline Movement. The distance, in meters, between the oldest and youngest shorelines for each tranect. EPR: End Point Rate. A shoreline change rate, in meters/year, calculated by dividing the NSM by the time elapsed between the oldest and youngest shorelines at each transect. LRR: Linear Regression Rate. A shoreline change rate, in meters/year, calculated by fitting a least-squares regression line to all of the shoreline points for a particular transect. The distance from the baseline, in meters, is plotted against the shoreline date, and slope of the line that provides the best fit is the LRR. LR2: The R-squared statistic, or coefficient of determination. The percentage of variance in the data that is explained by a regression, or in this case, the LRR value. It is a dimensionless index that ranges from 1.0 (a perfect fit, with the best fit line explaining all variation) to 0.0 (a bad fit, with the best fit line explaining little to no variation) and measures how successfully the best fit line (LRR) accounts for variation in the data. LCI95: Standard error of the slope at the 95% confidence interval. Calculated by muliplying the standard error, or standard deviation, of the slope by the two-tailed test statistic at the user-specified confidence percentage. For example if a reported LRR is 1.34 m/yr and a calculated LCI95 is 0.50, the band of confidence around the LRR is +/- 0.50. In other words, you can be 95% confidence that the true rate of change is between 0.84 and 1.84 m/yr. LRR_ft: The Linear Regression Rate, converted to feet/year. LCI95_ft: The LCI95, converted to feet. EPR_ft: The End Point Rate converted to feet.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
As part of the Maine Beach Mapping Program (MBMAP), MGS surveys annual alongshore shoreline positions (see Beach_Mapping_Shorelines). Using these shoreline positions and guidance from the USGS Digital Shoreline Analysis System (DSAS). DSAS is referenced as Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan, 2009, Digital Shoreline Analysis System (DSAS) version 4.0— An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. For more information on DSAS and the methodology DSAS employs, please see: https://woodshole.er.usgs.gov/project-pages/DSAS/. The supporting DSAS User Guide which describes how DSAS works and how statistics are calculated is available here: http://www.maine.gov/dacf/mgs/hazards/beach_mapping/DSAS_manual.pdf. MGS wrote a database procedure following protocols outlined in DSAS that allows for the calculation of different shoreline change rates and supporting statistics. This was done so that MGS no longer needed to depend on USGS updates to the DSAS software to keep current with ArcGIS software updates. The script casts shoreline-perpendicular transects at a set spacing (in this case, 10-m intervals along the shoreline), from a preset baseline (located landward of the monitored shorelines), and calculates a range of shoreline change statistics, including: Process Time: The time when the statistics were calculated. TransectID: The ID of the transect (including the group or line section ID; for example, 1-1, is line 1, transect 1) SCE: Shoreline Change Envelope. The distance, in meters, between the shoreline farthest from and closests to the baseline at each transect. NSM: Net Shoreline Movement. The distance, in meters, between the oldest and youngest shorelines for each tranect. EPR: End Point Rate. A shoreline change rate, in meters/year, calculated by dividing the NSM by the time elapsed between the oldest and youngest shorelines at each transect. LRR: Linear Regression Rate. A shoreline change rate, in meters/year, calculated by fitting a least-squares regression line to all of the shoreline points for a particular transect. The distance from the baseline, in meters, is plotted against the shoreline date, and slope of the line that provides the best fit is the LRR. LR2: The R-squared statistic, or coefficient of determination. The percentage of variance in the data that is explained by a regression, or in this case, the LRR value. It is a dimensionless index that ranges from 1.0 (a perfect fit, with the best fit line explaining all variation) to 0.0 (a bad fit, with the best fit line explaining little to no variation) and measures how successfully the best fit line (LRR) accounts for variation in the data. LCI95: Standard error of the slope at the 95% confidence interval. Calculated by muliplying the standard error, or standard deviation, of the slope by the two-tailed test statistic at the user-specified confidence percentage. For example if a reported LRR is 1.34 m/yr and a calculated LCI95 is 0.50, the band of confidence around the LRR is +/- 0.50. In other words, you can be 95% confidence that the true rate of change is between 0.84 and 1.84 m/yr. LRR_ft: The Linear Regression Rate, converted to feet/year. LCI95_ft: The LCI95, converted to feet. EPR_ft: The End Point Rate converted to feet.