2 datasets found
  1. g

    NIST Statistical Reference Datasets - SRD 140

    • gimi9.com
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). NIST Statistical Reference Datasets - SRD 140 [Dataset]. https://gimi9.com/dataset/data-gov_nist-statistical-reference-datasets-srd-140-df30c
    Explore at:
    Dataset updated
    Feb 1, 2001
    Description

    🇺🇸 미국 English The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.

  2. NIST Statistical Reference Datasets - SRD 140

    • datasets.ai
    • data.nist.gov
    • +2more
    21
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2024). NIST Statistical Reference Datasets - SRD 140 [Dataset]. https://datasets.ai/datasets/nist-statistical-reference-datasets-srd-140-df30c
    Explore at:
    21Available download formats
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2001). NIST Statistical Reference Datasets - SRD 140 [Dataset]. https://gimi9.com/dataset/data-gov_nist-statistical-reference-datasets-srd-140-df30c

NIST Statistical Reference Datasets - SRD 140

Explore at:
Dataset updated
Feb 1, 2001
Description

🇺🇸 미국 English The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.

Search
Clear search
Close search
Google apps
Main menu