Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2).
Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas
Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2).
Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2015 (years 1-7) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: http://www1.nyc.gov/assets/doh/downloads/pdf/environmental/comm-air-survey-08-14.pdf
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2).
Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas