2 datasets found
  1. Navigating News Narratives: A Media Bias Analysis Dataset

    • zenodo.org
    csv
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaina Raza; Shaina Raza (2023). Navigating News Narratives: A Media Bias Analysis Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.24422122
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shaina Raza; Shaina Raza
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    The prevalence of bias in the news media has become a critical issue, affecting public perception on a range of important topics such as political views, health, insurance, resource distributions, religion, race, age, gender, occupation, and climate change. The media has a moral responsibility to ensure accurate information dissemination and to increase awareness about important issues and the potential risks associated with them. This highlights the need for a solution that can help mitigate against the spread of false or misleading information and restore public trust in the media.

    Data description: This is a dataset for news media bias covering different dimensions of the biases: political, hate speech, political, toxicity, sexism, ageism, gender identity, gender discrimination, race/ethnicity, climate change, occupation, spirituality, which makes it a unique contribution. The dataset used for this project does not contain any personally identifiable information (PII).

    Data Format: The format of data is:

    • ID: Numeric unique identifier.
    • Text: Main content.
    • Dimension: Categorical descriptor of the text.
    • Biased_Words: List of words considered biased.
    • Aspect: Specific topic within the text.
    • Label: Neutral, Slightly Biased , Highly Biased


    Annotation Scheme: The annotation scheme is based on Active learning, which is Manual Labeling --> Semi-Supervised Learning --> Human Verifications (iterative process)

    • Bias Label: Indicate the presence/absence of bias (e.g., no bias, mild, strong).
    • Words/Phrases Level Biases: Identify specific biased words/phrases.
    • Subjective Bias (Aspect): Capture biases related to content aspects.


    List of datasets used : We curated different news categories like Climate crisis news summaries , occupational, spiritual/faith/ general using RSS to capture different dimensions of the news media biases. The annotation is performed using active learning to label the sentence (either neural/ slightly biased/ highly biased) and to pick biased words from the news.

    We also utilize publicly available data from the following links. Our Attribution to others.

    MBIC (media bias): Spinde, Timo, Lada Rudnitckaia, Kanishka Sinha, Felix Hamborg, Bela Gipp, and Karsten Donnay. "MBIC--A Media Bias Annotation Dataset Including Annotator Characteristics." arXiv preprint arXiv:2105.11910 (2021). https://zenodo.org/records/4474336

    Hyperpartisan news: Kiesel, Johannes, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno Stein, and Martin Potthast. "Semeval-2019 task 4: Hyperpartisan news detection." In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 829-839. 2019. https://huggingface.co/datasets/hyperpartisan_news_detection

    Toxic comment classification: Adams, C.J., Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, Nithum, and Will Cukierski. 2017. "Toxic Comment Classification Challenge." Kaggle. https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge.

    Jigsaw Unintended Bias: Adams, C.J., Daniel Borkan, Inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and Nithum. 2019. "Jigsaw Unintended Bias in Toxicity Classification." Kaggle. https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification.

    Age Bias : Díaz, Mark, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. "Addressing age-related bias in sentiment analysis." In Proceedings of the 2018 chi conference on human factors in computing systems, pp. 1-14. 2018. Age Bias Training and Testing Data - Age Bias and Sentiment Analysis Dataverse (harvard.edu)

    Multi-dimensional news Ukraine: Färber, Michael, Victoria Burkard, Adam Jatowt, and Sora Lim. "A multidimensional dataset based on crowdsourcing for analyzing and detecting news bias." In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3007-3014. 2020. https://zenodo.org/records/3885351#.ZF0KoxHMLtV

    Social biases: Sap, Maarten, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, and Yejin Choi. "Social bias frames: Reasoning about social and power implications of language." arXiv preprint arXiv:1911.03891 (2019). https://maartensap.com/social-bias-frames/

    Goal of this dataset :We want to offer open and free access to dataset, ensuring a wide reach to researchers and AI practitioners across the world. The dataset should be user-friendly to use and uploading and accessing data should be straightforward, to facilitate usage.

    If you use this dataset, please cite us.

    Navigating News Narratives: A Media Bias Analysis Dataset © 2023 by Shaina Raza, Vector Institute is licensed under CC BY-NC 4.0

  2. f

    Navigating News Narratives: A Media Bias Analysis Dataset

    • figshare.com
    txt
    Updated Dec 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaina Raza (2023). Navigating News Narratives: A Media Bias Analysis Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.24422122.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 8, 2023
    Dataset provided by
    figshare
    Authors
    Shaina Raza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The prevalence of bias in the news media has become a critical issue, affecting public perception on a range of important topics such as political views, health, insurance, resource distributions, religion, race, age, gender, occupation, and climate change. The media has a moral responsibility to ensure accurate information dissemination and to increase awareness about important issues and the potential risks associated with them. This highlights the need for a solution that can help mitigate against the spread of false or misleading information and restore public trust in the media.Data description: This is a dataset for news media bias covering different dimensions of the biases: political, hate speech, political, toxicity, sexism, ageism, gender identity, gender discrimination, race/ethnicity, climate change, occupation, spirituality, which makes it a unique contribution. The dataset used for this project does not contain any personally identifiable information (PII).The data structure is tabulated as follows:Text: The main content.Dimension: Descriptive category of the text.Biased_Words: A compilation of words regarded as biased.Aspect: Specific sub-topic within the main content.Label: Indicates the presence (True) or absence (False) of bias. The label is ternary - highly biased, slightly biased and neutralToxicity: Indicates the presence (True) or absence (False) of bias.Identity_mention: Mention of any identity based on words match.Annotation SchemeThe labels and annotations in the dataset are generated through a system of Active Learning, cycling through:Manual LabelingSemi-Supervised LearningHuman VerificationThe scheme comprises:Bias Label: Specifies the degree of bias (e.g., no bias, mild, or strong).Words/Phrases Level Biases: Pinpoints specific biased terms or phrases.Subjective Bias (Aspect): Highlights biases pertinent to content dimensions.Due to the nuances of semantic match algorithms, certain labels such as 'identity' and 'aspect' may appear distinctively different.List of datasets used : We curated different news categories like Climate crisis news summaries , occupational, spiritual/faith/ general using RSS to capture different dimensions of the news media biases. The annotation is performed using active learning to label the sentence (either neural/ slightly biased/ highly biased) and to pick biased words from the news.We also utilize publicly available data from the following links. Our Attribution to others.MBIC (media bias): Spinde, Timo, Lada Rudnitckaia, Kanishka Sinha, Felix Hamborg, Bela Gipp, and Karsten Donnay. "MBIC--A Media Bias Annotation Dataset Including Annotator Characteristics." arXiv preprint arXiv:2105.11910 (2021). https://zenodo.org/records/4474336Hyperpartisan news: Kiesel, Johannes, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno Stein, and Martin Potthast. "Semeval-2019 task 4: Hyperpartisan news detection." In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 829-839. 2019. https://huggingface.co/datasets/hyperpartisan_news_detectionToxic comment classification: Adams, C.J., Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, Nithum, and Will Cukierski. 2017. "Toxic Comment Classification Challenge." Kaggle. https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge.Jigsaw Unintended Bias: Adams, C.J., Daniel Borkan, Inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and Nithum. 2019. "Jigsaw Unintended Bias in Toxicity Classification." Kaggle. https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification.Age Bias : Díaz, Mark, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. "Addressing age-related bias in sentiment analysis." In Proceedings of the 2018 chi conference on human factors in computing systems, pp. 1-14. 2018. Age Bias Training and Testing Data - Age Bias and Sentiment Analysis Dataverse (harvard.edu)Multi-dimensional news Ukraine: Färber, Michael, Victoria Burkard, Adam Jatowt, and Sora Lim. "A multidimensional dataset based on crowdsourcing for analyzing and detecting news bias." In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3007-3014. 2020. https://zenodo.org/records/3885351#.ZF0KoxHMLtVSocial biases: Sap, Maarten, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, and Yejin Choi. "Social bias frames: Reasoning about social and power implications of language." arXiv preprint arXiv:1911.03891 (2019). https://maartensap.com/social-bias-frames/Goal of this dataset :We want to offer open and free access to dataset, ensuring a wide reach to researchers and AI practitioners across the world. The dataset should be user-friendly to use and uploading and accessing data should be straightforward, to facilitate usage.If you use this dataset, please cite us.Navigating News Narratives: A Media Bias Analysis Dataset © 2023 by Shaina Raza, Vector Institute is licensed under CC BY-NC 4.0

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shaina Raza; Shaina Raza (2023). Navigating News Narratives: A Media Bias Analysis Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.24422122
Organization logo

Navigating News Narratives: A Media Bias Analysis Dataset

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csvAvailable download formats
Dataset updated
Nov 30, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Shaina Raza; Shaina Raza
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Time period covered
2023
Description

The prevalence of bias in the news media has become a critical issue, affecting public perception on a range of important topics such as political views, health, insurance, resource distributions, religion, race, age, gender, occupation, and climate change. The media has a moral responsibility to ensure accurate information dissemination and to increase awareness about important issues and the potential risks associated with them. This highlights the need for a solution that can help mitigate against the spread of false or misleading information and restore public trust in the media.

Data description: This is a dataset for news media bias covering different dimensions of the biases: political, hate speech, political, toxicity, sexism, ageism, gender identity, gender discrimination, race/ethnicity, climate change, occupation, spirituality, which makes it a unique contribution. The dataset used for this project does not contain any personally identifiable information (PII).

Data Format: The format of data is:

  • ID: Numeric unique identifier.
  • Text: Main content.
  • Dimension: Categorical descriptor of the text.
  • Biased_Words: List of words considered biased.
  • Aspect: Specific topic within the text.
  • Label: Neutral, Slightly Biased , Highly Biased


Annotation Scheme: The annotation scheme is based on Active learning, which is Manual Labeling --> Semi-Supervised Learning --> Human Verifications (iterative process)

  • Bias Label: Indicate the presence/absence of bias (e.g., no bias, mild, strong).
  • Words/Phrases Level Biases: Identify specific biased words/phrases.
  • Subjective Bias (Aspect): Capture biases related to content aspects.


List of datasets used : We curated different news categories like Climate crisis news summaries , occupational, spiritual/faith/ general using RSS to capture different dimensions of the news media biases. The annotation is performed using active learning to label the sentence (either neural/ slightly biased/ highly biased) and to pick biased words from the news.

We also utilize publicly available data from the following links. Our Attribution to others.

MBIC (media bias): Spinde, Timo, Lada Rudnitckaia, Kanishka Sinha, Felix Hamborg, Bela Gipp, and Karsten Donnay. "MBIC--A Media Bias Annotation Dataset Including Annotator Characteristics." arXiv preprint arXiv:2105.11910 (2021). https://zenodo.org/records/4474336

Hyperpartisan news: Kiesel, Johannes, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno Stein, and Martin Potthast. "Semeval-2019 task 4: Hyperpartisan news detection." In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 829-839. 2019. https://huggingface.co/datasets/hyperpartisan_news_detection

Toxic comment classification: Adams, C.J., Jeffrey Sorensen, Julia Elliott, Lucas Dixon, Mark McDonald, Nithum, and Will Cukierski. 2017. "Toxic Comment Classification Challenge." Kaggle. https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge.

Jigsaw Unintended Bias: Adams, C.J., Daniel Borkan, Inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and Nithum. 2019. "Jigsaw Unintended Bias in Toxicity Classification." Kaggle. https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification.

Age Bias : Díaz, Mark, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. "Addressing age-related bias in sentiment analysis." In Proceedings of the 2018 chi conference on human factors in computing systems, pp. 1-14. 2018. Age Bias Training and Testing Data - Age Bias and Sentiment Analysis Dataverse (harvard.edu)

Multi-dimensional news Ukraine: Färber, Michael, Victoria Burkard, Adam Jatowt, and Sora Lim. "A multidimensional dataset based on crowdsourcing for analyzing and detecting news bias." In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3007-3014. 2020. https://zenodo.org/records/3885351#.ZF0KoxHMLtV

Social biases: Sap, Maarten, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, and Yejin Choi. "Social bias frames: Reasoning about social and power implications of language." arXiv preprint arXiv:1911.03891 (2019). https://maartensap.com/social-bias-frames/

Goal of this dataset :We want to offer open and free access to dataset, ensuring a wide reach to researchers and AI practitioners across the world. The dataset should be user-friendly to use and uploading and accessing data should be straightforward, to facilitate usage.

If you use this dataset, please cite us.

Navigating News Narratives: A Media Bias Analysis Dataset © 2023 by Shaina Raza, Vector Institute is licensed under CC BY-NC 4.0

Search
Clear search
Close search
Google apps
Main menu