Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OSCAR (Ocean Surface Current Analysis Real-time) contains near-surface ocean current estimates, derived using quasi-linear and steady flow momentum equations. The horizontal velocity is directly estimated from sea surface height, surface vector wind and sea surface temperature. These data were collected from the various satellites and in situ instruments. The model formulation combines geostrophic, Ekman and Stommel shear dynamics, and a complementary term from the surface buoyancy gradient. Data are on a 1/3 degree grid with a 5 day resolution. OSCAR is generated by Earth Space Research (ESR) https://www.esr.org/research/oscar/oscar-surface-currents/. This collection contains data in 5-day files. For yearly files, see https://doi.org/10.5067/OSCAR-03D1Y
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OSCAR (Ocean Surface Current Analysis Real-time) contains near-surface ocean current estimates, derived using quasi-linear and steady flow momentum equations. The horizontal velocity is directly estimated from sea surface height, surface vector wind and sea surface temperature. These data were collected from the various satellites and in situ instruments. The model formulation combines geostrophic, Ekman and Stommel shear dynamics, and a complementary term from the surface buoyancy gradient. Data are on a 1/3 degree grid with a 5 day resolution. OSCAR is generated by Earth Space Research (ESR) https://www.esr.org/research/oscar/oscar-surface-currents/. This collection contains data in yearly files. For 5-day files, see https://doi.org/10.5067/OSCAR-03D01
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OSCAR (Ocean Surface Current Analysis Real-time) contains near-surface ocean current estimates, derived using quasi-linear and steady flow momentum equations. The horizontal velocity is directly estimated from sea surface height, surface vector wind and sea surface temperature. These data were collected from the various satellites and in situ instruments. The model formulation combines geostrophic, Ekman and Stommel shear dynamics, and a complementary term from the surface buoyancy gradient. Data are on a 1/3 degree grid with a 5 day resolution. OSCAR is generated by Earth Space Research (ESR) https://www.esr.org/research/oscar/oscar-surface-currents/. This collection contains data in 5-day files. For yearly files, see https://doi.org/10.5067/OSCAR-03D1Y