https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/
The National Center for Education Statistics surveyed 12,330 U.S. adults ages 16 to 74 living in households from 2012 to 2017 for the Program for the International Assessment of Adult Competencies (PIAAC), an international study involving over 35 countries. Using small area estimation models (SAE), indirect estimates of literacy and numeracy proficiency have been produced for all U.S. states and counties. By using PIAAC survey data in conjunction with data from the American Community Survey, the Skills Map data provides reliable estimates of adult literacy and numeracy skills in all 50 states, all 3,141 counties, and the District of Columbia.
SAE is a model-dependent approach that produces indirect estimates for areas where survey data is inadequate for direct estimation. SAE models assume that counties with similar demographics would have similar estimates of skills. An estimate for a county then “borrows strength” across related small areas through auxiliary information to produce reliable indirect estimates for small areas. The models rely on covariates available at the small areas, and PIAAC survey data. In the absence of any other proficiency assessment data for individual states and counties, the estimates provide a general picture of proficiency for all states and counties. In addition to the indirect estimates, this website provides precision estimates and facilitates statistical comparisons among states and counties. For technical details on the SAE approach applied to PIAAC, see section 5 of the State and County Estimation Methodology Report.
The U.S. county indirect estimates reported in this data are not directly comparable with the direct estimates for PIAAC countries that are reported by the Organization for Economic Cooperation and Development (OECD). Specifically, the U.S. county indirect estimates (1) represent modeled estimates for adults ages 16-74 whereas the OECD’s direct estimates for participating countries represent estimates for adults ages 16-65, (2) include data for “literacy-related nonresponse” (i.e., adults whose English language skills were too low to participate in the study) whereas the OECD’s direct estimates for countries exclude these data, and (3) are based on three combined data collections (2012/2014/2017) whereas OECD’s direct estimates are based on a single data collection.Please visit the Skills Map to learn more about this data.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/
The National Center for Education Statistics surveyed 12,330 U.S. adults ages 16 to 74 living in households from 2012 to 2017 for the Program for the International Assessment of Adult Competencies (PIAAC), an international study involving over 35 countries. Using small area estimation models (SAE), indirect estimates of literacy and numeracy proficiency have been produced for all U.S. states and counties. By using PIAAC survey data in conjunction with data from the American Community Survey, the Skills Map data provides reliable estimates of adult literacy and numeracy skills in all 50 states, all 3,141 counties, and the District of Columbia.
The indirect estimates provided in this data were created using a sophisticated statistical method generally referred to as small area estimation (SAE). SAE is a model-dependent approach that produces indirect estimates for areas where survey data is inadequate for direct estimation. SAE models assume that counties with similar demographics would have similar estimates of skills. An estimate for a county then “borrows strength” across related small areas through auxiliary information to produce reliable indirect estimates for small areas. The models rely on covariates available at the small areas, and PIAAC survey data. In the absence of any other proficiency assessment data for individual states and counties, the estimates provide a general picture of proficiency for all states and counties. For technical details on the SAE approach applied to PIAAC, see section 5 of the State and County Estimation Methodology Report.
The U.S. state indirect estimates reported in this data are not directly comparable with the direct estimates for PIAAC countries that are reported by the Organization for Economic Cooperation and Development (OECD). Specifically, the U.S. state indirect estimates (1) represent modeled estimates for adults ages 16-74 whereas the OECD’s direct estimates for participating countries represent estimates for adults ages 16-65, (2) include data for “literacy-related nonresponse” (i.e., adults whose English language skills were too low to participate in the study) whereas the OECD’s direct estimates for countries exclude these data, and (3) are based on three combined data collections (2012/2014/2017) whereas OECD’s direct estimates are based on a single data collection.Please visit the Skills Map to learn more about this data.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/
The National Center for Education Statistics surveyed 12,330 U.S. adults ages 16 to 74 living in households from 2012 to 2017 for the Program for the International Assessment of Adult Competencies (PIAAC), an international study involving over 35 countries. Using small area estimation models (SAE), indirect estimates of literacy and numeracy proficiency have been produced for all U.S. states and counties. By using PIAAC survey data in conjunction with data from the American Community Survey, the Skills Map data provides reliable estimates of adult literacy and numeracy skills in all 50 states, all 3,141 counties, and the District of Columbia.
SAE is a model-dependent approach that produces indirect estimates for areas where survey data is inadequate for direct estimation. SAE models assume that counties with similar demographics would have similar estimates of skills. An estimate for a county then “borrows strength” across related small areas through auxiliary information to produce reliable indirect estimates for small areas. The models rely on covariates available at the small areas, and PIAAC survey data. In the absence of any other proficiency assessment data for individual states and counties, the estimates provide a general picture of proficiency for all states and counties. In addition to the indirect estimates, this website provides precision estimates and facilitates statistical comparisons among states and counties. For technical details on the SAE approach applied to PIAAC, see section 5 of the State and County Estimation Methodology Report.
The U.S. county indirect estimates reported in this data are not directly comparable with the direct estimates for PIAAC countries that are reported by the Organization for Economic Cooperation and Development (OECD). Specifically, the U.S. county indirect estimates (1) represent modeled estimates for adults ages 16-74 whereas the OECD’s direct estimates for participating countries represent estimates for adults ages 16-65, (2) include data for “literacy-related nonresponse” (i.e., adults whose English language skills were too low to participate in the study) whereas the OECD’s direct estimates for countries exclude these data, and (3) are based on three combined data collections (2012/2014/2017) whereas OECD’s direct estimates are based on a single data collection.Please visit the Skills Map to learn more about this data.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.