3 datasets found
  1. p

    PTB-XL, a large publicly available electrocardiography dataset

    • physionet.org
    • maplerate.net
    Updated Nov 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter (2022). PTB-XL, a large publicly available electrocardiography dataset [Dataset]. http://doi.org/10.13026/kfzx-aw45
    Explore at:
    Dataset updated
    Nov 9, 2022
    Authors
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only on the basis of the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures. In our opinion, both aspects are not covered satisfactorily by existing freely accessible ECG datasets.

    The PTB-XL ECG dataset is a large dataset of 21799 clinical 12-lead ECGs from 18869 patients of 10 second length. The raw waveform data was annotated by up to two cardiologists, who assigned potentially multiple ECG statements to each record. The in total 71 different ECG statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements. To ensure comparability of machine learning algorithms trained on the dataset, we provide recommended splits into training and test sets. In combination with the extensive annotation, this turns the dataset into a rich resource for the training and the evaluation of automatic ECG interpretation algorithms. The dataset is complemented by extensive metadata on demographics, infarction characteristics, likelihoods for diagnostic ECG statements as well as annotated signal properties.

  2. p

    PTB-XL, a large publicly available electrocardiography dataset

    • physionet.org
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter (2020). PTB-XL, a large publicly available electrocardiography dataset [Dataset]. http://doi.org/10.13026/qgmg-0d46
    Explore at:
    Dataset updated
    Apr 17, 2020
    Authors
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only on the basis of the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures. In our opinion, both aspects are not covered satisfactorily by existing freely accessible ECG datasets.

    The PTB-XL ECG dataset is a large dataset of 21837 clinical 12-lead ECGs from 18885 patients of 10 second length. The raw waveform data was annotated by up to two cardiologists, who assigned potentially multiple ECG statements to each record. The in total 71 different ECG statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements. To ensure comparability of machine learning algorithms trained on the dataset, we provide recommended splits into training and test sets. In combination with the extensive annotation, this turns the dataset into a rich resource for the training and the evaluation of automatic ECG interpretation algorithms. The dataset is complemented by extensive metadata on demographics, infarction characteristics, likelihoods for diagnostic ECG statements as well as annotated signal properties.

  3. p

    PTB-XL, a large publicly available electrocardiography dataset

    • physionet.org
    Updated Aug 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter (2022). PTB-XL, a large publicly available electrocardiography dataset [Dataset]. http://doi.org/10.13026/zx4k-te85
    Explore at:
    Dataset updated
    Aug 18, 2022
    Authors
    Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only on the basis of the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures. In our opinion, both aspects are not covered satisfactorily by existing freely accessible ECG datasets.

    The PTB-XL ECG dataset is a large dataset of 21801 clinical 12-lead ECGs from 18869 patients of 10 second length. The raw waveform data was annotated by up to two cardiologists, who assigned potentially multiple ECG statements to each record. The in total 71 different ECG statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements. To ensure comparability of machine learning algorithms trained on the dataset, we provide recommended splits into training and test sets. In combination with the extensive annotation, this turns the dataset into a rich resource for the training and the evaluation of automatic ECG interpretation algorithms. The dataset is complemented by extensive metadata on demographics, infarction characteristics, likelihoods for diagnostic ECG statements as well as annotated signal properties.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter (2022). PTB-XL, a large publicly available electrocardiography dataset [Dataset]. http://doi.org/10.13026/kfzx-aw45

PTB-XL, a large publicly available electrocardiography dataset

Explore at:
Dataset updated
Nov 9, 2022
Authors
Patrick Wagner; Nils Strodthoff; Ralf-Dieter Bousseljot; Wojciech Samek; Tobias Schaeffter
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Electrocardiography (ECG) is a key diagnostic tool to assess the cardiac condition of a patient. Automatic ECG interpretation algorithms as diagnosis support systems promise large reliefs for the medical personnel - only on the basis of the number of ECGs that are routinely taken. However, the development of such algorithms requires large training datasets and clear benchmark procedures. In our opinion, both aspects are not covered satisfactorily by existing freely accessible ECG datasets.

The PTB-XL ECG dataset is a large dataset of 21799 clinical 12-lead ECGs from 18869 patients of 10 second length. The raw waveform data was annotated by up to two cardiologists, who assigned potentially multiple ECG statements to each record. The in total 71 different ECG statements conform to the SCP-ECG standard and cover diagnostic, form, and rhythm statements. To ensure comparability of machine learning algorithms trained on the dataset, we provide recommended splits into training and test sets. In combination with the extensive annotation, this turns the dataset into a rich resource for the training and the evaluation of automatic ECG interpretation algorithms. The dataset is complemented by extensive metadata on demographics, infarction characteristics, likelihoods for diagnostic ECG statements as well as annotated signal properties.

Search
Clear search
Close search
Google apps
Main menu