3 datasets found
  1. t

    Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site...

    • service.tib.eu
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site 172-1062 - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/png-doi-10-1594-pangaea-792652
    Explore at:
    Dataset updated
    Nov 29, 2024
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

  2. d

    Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site...

    • b2find.dkrz.de
    Updated May 18, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site 172-1062 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/08d5f298-1574-596f-b704-a767fdfa143e
    Explore at:
    Dataset updated
    May 18, 2012
    Description

    Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

  3. d

    Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site...

    • search.dataone.org
    • doi.pangaea.de
    Updated Jan 6, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bourne, Mark; Niocaill, Conall M; Thomas, Alexander L; Knudsen, Mads Faurschou; Henderson, Gideon M (2018). Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site 172-1062 [Dataset]. https://search.dataone.org/view/50367390583965a9fb900ab8710bcbd9
    Explore at:
    Dataset updated
    Jan 6, 2018
    Dataset provided by
    PANGAEA Data Publisher for Earth and Environmental Science
    Authors
    Bourne, Mark; Niocaill, Conall M; Thomas, Alexander L; Knudsen, Mads Faurschou; Henderson, Gideon M
    Time period covered
    Mar 15, 1997 - Mar 18, 1997
    Area covered
    Description

    Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site 172-1062 - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/png-doi-10-1594-pangaea-792652

Paleomagnetic, stable oxygen isotope ratios, and U/Th activities of ODP Site 172-1062 - Vdataset - LDM

Explore at:
Dataset updated
Nov 29, 2024
License

Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically

Description

Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

Search
Clear search
Close search
Google apps
Main menu