Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Protein aggregation is the phenomenon which occurs when misfolded or unfolded protein physically binds together and can cause the development of various amyloidosis diseases. The goal of this study was to construct surrogate models for predicting protein aggregation using data-driven methods with two types of databases. This study suggests which approaches is more effective to predict protein aggregation depending on types of descriptors and database.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Protein aggregation occurs when misfolded or unfolded proteins physically bind together and can promote the development of various amyloid diseases. This study aimed to construct surrogate models for predicting protein aggregation via data-driven methods using two types of databases. First, an aggregation propensity score database was constructed by calculating the scores for protein structures in the Protein Data Bank using Aggrescan3D 2.0. Moreover, feature- and graph-based models for predicting protein aggregation have been developed by using this database. The graph-based model outperformed the feature-based model, resulting in an R2 of 0.95, although it intrinsically required protein structures. Second, for the experimental data, a feature-based model was built using the Curated Protein Aggregation Database 2.0 to predict the aggregated intensity curves. In summary, this study suggests approaches that are more effective in predicting protein aggregation, depending on the type of descriptor and the database.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Protein aggregation is the phenomenon which occurs when misfolded or unfolded protein physically binds together and can cause the development of various amyloidosis diseases. The goal of this study was to construct surrogate models for predicting protein aggregation using data-driven methods with two types of databases. This study suggests which approaches is more effective to predict protein aggregation depending on types of descriptors and database.