This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW13, RW14, RW15 and RW16) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting lower currents.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health.
In this dataset, four 18650 Li-ion batteries (Identified as RW25, RW26, RW27 and RW28) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting higher currents. The ambient temperature at which the batteries are cycled was held at approximately 40C for these experiments.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW21, RW22, RW23 and RW24) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting lower currents. The ambient temperature at which the batteries are cycled was held at approximately 40C for these experiments.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW13, RW14, RW15 and RW16) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting lower currents.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW25, RW26, RW27 and RW28) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting higher currents. The ambient temperature at which the batteries are cycled was held at approximately 40C for these experiments.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW21, RW22, RW23 and RW24) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting lower currents. The ambient temperature at which the batteries are cycled was held at approximately 40C for these experiments.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW13, RW14, RW15 and RW16) were continuously operated by repeatedly charging them to 4.2V and then discharging them to 3.2V using a randomized sequence of discharging currents between 0.5A and 5A. This type of discharging profile is referred to here as random walk (RW) discharging. A customized probability distribution is used in this experiment to select a new load setpoint every 1 minute during RW discharging operation. The custom probability distribution was designed to be skewed towards selecting lower currents.