2 datasets found
  1. e

    Reproducibility, specificity and accuracy of DIA quantification - DIA...

    • ebi.ac.uk
    Updated Aug 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julian Uszkoreit (2019). Reproducibility, specificity and accuracy of DIA quantification - DIA analysis [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD012988
    Explore at:
    Dataset updated
    Aug 11, 2019
    Authors
    Julian Uszkoreit
    Variables measured
    Proteomics
    Description

    For the complete description see the manuscript. Data dependent acquisition (DDA) is the method of choice for mass spectrometry based proteomics discovery experiments, data-independent acquisition (DIA) is steadily becoming more important. One of the most important requirement to perform a DIA analysis is the availability of spectral libraries for the peptide identification and quantification. Several researches were already conducted regarding the creation of spectral libraries from DDA analyses and obtaining identifications with these in DIA measurements. But so far only few experiments were conducted, to estimate the effect of these libraries on the quantitative level. In this work we created a spike-in gold standard dataset with known contents and ratios of proteins in a complex sample matrix. With this dataset, we first created spectral libraries using different sample preparation approaches with and without sample prefractionation on peptide and protein level. Two different search engines were used for protein identification. In total, five different spike-in states were compared with DIA analyses, comparing eight different spectral libraries generated by varying approaches and one library free method, as well as one default DDA analysis. Not only the number of identifications on peptide and protein level in the spectral libraries and the corresponding analyses was inspected, but also the number of expected and identified significant quantifications and their ratios were thoroughly examined.

  2. Reproducibility, specificity and accuracy of DIA quantification - DDA...

    • data.niaid.nih.gov
    • ebi.ac.uk
    xml
    Updated Nov 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julian Uszkoreit; Katrin Marcus (2019). Reproducibility, specificity and accuracy of DIA quantification - DDA analysis [Dataset]. https://data.niaid.nih.gov/resources?id=pxd012986
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Nov 8, 2019
    Dataset provided by
    Ruhr University Bochum,Medical Faculty,Medical Bioinformatics
    Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center
    Authors
    Julian Uszkoreit; Katrin Marcus
    Variables measured
    Proteomics
    Description

    Data dependent acquisition (DDA) is the method of choice for mass spectrometry based proteomics discovery experiments, data-independent acquisition (DIA) is steadily becoming more important. One of the most important requirement to perform a DIA analysis is the availability of spectral libraries for the peptide identification and quantification. Several researches were already conducted regarding the creation of spectral libraries from DDA analyses and obtaining identifications with these in DIA measurements. But so far only few experiments were conducted, to estimate the effect of these libraries on the quantitative level. In this work we created a spike-in gold standard dataset with known contents and ratios of proteins in a complex sample matrix. With this dataset, we first created spectral libraries using different sample preparation approaches with and without sample prefractionation on peptide and protein level. Two different search engines were used for protein identification. In total, five different spike-in states were compared with DIA analyses, comparing eight different spectral libraries generated by varying approaches and one library free method, as well as one default DDA analysis. Not only the number of identifications on peptide and protein level in the spectral libraries and the corresponding analyses was inspected, but also the number of expected and identified significant quantifications and their ratios were thoroughly examined. We found, that while libraries of prefractionationed samples are generally larger, the actually yielded identifications are not increased compared to repetitive non-fractionated measurements. Furthermore, we show that the accuracy of the quantifications is also highly dependent on the applied spectra library and also whether the peptide or protein level is analysed. Overall, the reproducibility and accuracy of DIA is superior to DDA in all analysed approaches.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Julian Uszkoreit (2019). Reproducibility, specificity and accuracy of DIA quantification - DIA analysis [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD012988

Reproducibility, specificity and accuracy of DIA quantification - DIA analysis

Explore at:
Dataset updated
Aug 11, 2019
Authors
Julian Uszkoreit
Variables measured
Proteomics
Description

For the complete description see the manuscript. Data dependent acquisition (DDA) is the method of choice for mass spectrometry based proteomics discovery experiments, data-independent acquisition (DIA) is steadily becoming more important. One of the most important requirement to perform a DIA analysis is the availability of spectral libraries for the peptide identification and quantification. Several researches were already conducted regarding the creation of spectral libraries from DDA analyses and obtaining identifications with these in DIA measurements. But so far only few experiments were conducted, to estimate the effect of these libraries on the quantitative level. In this work we created a spike-in gold standard dataset with known contents and ratios of proteins in a complex sample matrix. With this dataset, we first created spectral libraries using different sample preparation approaches with and without sample prefractionation on peptide and protein level. Two different search engines were used for protein identification. In total, five different spike-in states were compared with DIA analyses, comparing eight different spectral libraries generated by varying approaches and one library free method, as well as one default DDA analysis. Not only the number of identifications on peptide and protein level in the spectral libraries and the corresponding analyses was inspected, but also the number of expected and identified significant quantifications and their ratios were thoroughly examined.

Search
Clear search
Close search
Google apps
Main menu