2 datasets found
  1. f

    Results of the ML models using KNN imputer.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Results of the ML models using KNN imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  2. f

    Results of the ML models using PCA imputer.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Results of the ML models using PCA imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Turki Aljrees (2024). Results of the ML models using KNN imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t005

Results of the ML models using KNN imputer.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jan 3, 2024
Dataset provided by
PLOS ONE
Authors
Turki Aljrees
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

Search
Clear search
Close search
Google apps
Main menu