4 datasets found
  1. S155

    • zenodo.org
    tar
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zurowietz; Martin Zurowietz (2020). S155 [Dataset]. http://doi.org/10.5281/zenodo.3603803
    Explore at:
    tarAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Zurowietz; Martin Zurowietz
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    A fully annotated subset of the SO242/2_155-1 image dataset. The annotations are given as train and test splits that can be used to evaluate machine learning methods. The following classes of fauna were used for annotation:

    • anemone
    • coral
    • crustacean
    • ipnops fish
    • litter
    • ophiuroid
    • other fauna
    • sea cucumber
    • sponge
    • stalked crinoid

    For a definition of the classes see [1].

    Related datasets:

    This dataset contains the following files:

    • annotations/test.csv: The BIIGLE CSV annotation report of the annotations of the test split of this dataset. These annotations are used to test the performance of the trained Mask R-CNN model.
    • annotations/train.csv: The BIIGLE CSV annotation report of the annotations of the train split of this dataset. These annotations are used to generate the annotation patches which are transformed with scale and style transfer to be used to train the Mask R-CNN model.
    • images/: Directory that contains all the original image files.
    • dataset.json: JSON file that contains information about the dataset.
      • name: The name of the dataset.
      • images_dir: Name of the directory that contains the original image files.
      • metadata_file: Path to the CSV file that contains image metadata.
      • test_annotations_file: Path to the CSV file that contains the test annotations.
      • train_annotations_file: Path to the CSV file that contains the train annotations.
      • annotation_patches_dir: Name of the directory that should contain the scale- and style-transferred annotation patches.
      • crop_dimension: Edge length of an annotation or style patch in pixels.
    • metadata.csv: A CSV file that contains metadata for each original image file. In this case the distance of the camera to the sea floor is given for each image.
  2. S171

    • zenodo.org
    tar
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zurowietz; Martin Zurowietz (2020). S171 [Dataset]. http://doi.org/10.5281/zenodo.3603809
    Explore at:
    tarAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Zurowietz; Martin Zurowietz
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    A fully annotated subset of the SO242/2_171-1 image dataset. The annotations are given as train and test splits that can be used to evaluate machine learning methods. The following classes of fauna were used for annotation:

    • anemone
    • coral
    • crustacean
    • ipnops fish
    • litter
    • ophiuroid
    • other fauna
    • sea cucumber
    • sponge
    • stalked crinoid

    For a definition of the classes see [1].

    Related datasets:

    This dataset contains the following files:

    • annotations/test.csv: The BIIGLE CSV annotation report of the annotations of the test split of this dataset. These annotations are used to test the performance of the trained Mask R-CNN model.
    • annotations/train.csv: The BIIGLE CSV annotation report of the annotations of the train split of this dataset. These annotations are used to generate the annotation patches which are transformed with scale and style transfer to be used to train the Mask R-CNN model.
    • images/: Directory that contains all the original image files.
    • dataset.json: JSON file that contains information about the dataset.
      • name: The name of the dataset.
      • images_dir: Name of the directory that contains the original image files.
      • metadata_file: Path to the CSV file that contains image metadata.
      • test_annotations_file: Path to the CSV file that contains the test annotations.
      • train_annotations_file: Path to the CSV file that contains the train annotations.
      • annotation_patches_dir: Name of the directory that should contain the scale- and style-transferred annotation patches.
      • crop_dimension: Edge length of an annotation or style patch in pixels.
    • metadata.csv: A CSV file that contains metadata for each original image file. In this case the distance of the camera to the sea floor is given for each image.
  3. S233

    • zenodo.org
    tar
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zurowietz; Martin Zurowietz (2020). S233 [Dataset]. http://doi.org/10.5281/zenodo.3603815
    Explore at:
    tarAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Zurowietz; Martin Zurowietz
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    A fully annotated subset of the SO242/2_233-1 image dataset. The annotations are given as train and test splits that can be used to evaluate machine learning methods. The following classes of fauna were used for annotation:

    • anemone
    • coral
    • crustacean
    • ipnops fish
    • litter
    • ophiuroid
    • other fauna
    • sea cucumber
    • sponge
    • stalked crinoid

    For a definition of the classes see [1].

    Related datasets:

    This dataset contains the following files:

    • annotations/test.csv: The BIIGLE CSV annotation report of the annotations of the test split of this dataset. These annotations are used to test the performance of the trained Mask R-CNN model.
    • annotations/train.csv: The BIIGLE CSV annotation report of the annotations of the train split of this dataset. These annotations are used to generate the annotation patches which are transformed with scale and style transfer to be used to train the Mask R-CNN model.
    • images/: Directory that contains all the original image files.
    • dataset.json: JSON file that contains information about the dataset.
      • name: The name of the dataset.
      • images_dir: Name of the directory that contains the original image files.
      • metadata_file: Path to the CSV file that contains image metadata.
      • test_annotations_file: Path to the CSV file that contains the test annotations.
      • train_annotations_file: Path to the CSV file that contains the train annotations.
      • annotation_patches_dir: Name of the directory that should contain the scale- and style-transferred annotation patches.
      • crop_dimension: Edge length of an annotation or style patch in pixels.
    • metadata.csv: A CSV file that contains metadata for each original image file. In this case the distance of the camera to the sea floor is given for each image.
  4. S083

    • zenodo.org
    tar
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zurowietz; Martin Zurowietz (2020). S083 [Dataset]. http://doi.org/10.5281/zenodo.3600132
    Explore at:
    tarAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Zurowietz; Martin Zurowietz
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    A fully annotated subset of the SO242/1_83-1_AUV10 image dataset. The annotations are given as train and test splits that can be used to evaluate machine learning methods. The following classes of fauna were used for annotation:

    • anemone
    • coral
    • crustacean
    • ipnops fish
    • litter
    • ophiuroid
    • other fauna
    • sea cucumber
    • sponge
    • stalked crinoid

    For a definition of the classes see [1].

    Related datasets:

    This dataset contains the following files:

    • annotations/test.csv: The BIIGLE CSV annotation report of the annotations of the test split of this dataset. These annotations are used to test the performance of the trained Mask R-CNN model.
    • annotations/train.csv: The BIIGLE CSV annotation report of the annotations of the train split of this dataset. These annotations are used to generate the annotation patches which are transformed with scale and style transfer to be used to train the Mask R-CNN model.
    • images/: Directory that contains all the original image files.
    • dataset.json: JSON file that contains information about the dataset.
      • name: The name of the dataset.
      • images_dir: Name of the directory that contains the original image files.
      • metadata_file: Path to the CSV file that contains image metadata.
      • test_annotations_file: Path to the CSV file that contains the test annotations.
      • train_annotations_file: Path to the CSV file that contains the train annotations.
      • annotation_patches_dir: Name of the directory that should contain the scale- and style-transferred annotation patches.
      • crop_dimension: Edge length of an annotation or style patch in pixels.
    • metadata.csv: A CSV file that contains metadata for each original image file. In this case the distance of the camera to the sea floor is given for each image.
  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Martin Zurowietz; Martin Zurowietz (2020). S155 [Dataset]. http://doi.org/10.5281/zenodo.3603803
Organization logo

S155

Explore at:
tarAvailable download formats
Dataset updated
Oct 6, 2020
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Martin Zurowietz; Martin Zurowietz
License

Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically

Description

A fully annotated subset of the SO242/2_155-1 image dataset. The annotations are given as train and test splits that can be used to evaluate machine learning methods. The following classes of fauna were used for annotation:

  • anemone
  • coral
  • crustacean
  • ipnops fish
  • litter
  • ophiuroid
  • other fauna
  • sea cucumber
  • sponge
  • stalked crinoid

For a definition of the classes see [1].

Related datasets:

This dataset contains the following files:

  • annotations/test.csv: The BIIGLE CSV annotation report of the annotations of the test split of this dataset. These annotations are used to test the performance of the trained Mask R-CNN model.
  • annotations/train.csv: The BIIGLE CSV annotation report of the annotations of the train split of this dataset. These annotations are used to generate the annotation patches which are transformed with scale and style transfer to be used to train the Mask R-CNN model.
  • images/: Directory that contains all the original image files.
  • dataset.json: JSON file that contains information about the dataset.
    • name: The name of the dataset.
    • images_dir: Name of the directory that contains the original image files.
    • metadata_file: Path to the CSV file that contains image metadata.
    • test_annotations_file: Path to the CSV file that contains the test annotations.
    • train_annotations_file: Path to the CSV file that contains the train annotations.
    • annotation_patches_dir: Name of the directory that should contain the scale- and style-transferred annotation patches.
    • crop_dimension: Edge length of an annotation or style patch in pixels.
  • metadata.csv: A CSV file that contains metadata for each original image file. In this case the distance of the camera to the sea floor is given for each image.
Search
Clear search
Close search
Google apps
Main menu