2 datasets found
  1. r

    SAIVT-Campus Dataset

    • researchdata.edu.au
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QUT SAIVT: Speech, audio, image and video technologies research (2016). SAIVT-Campus Dataset [Dataset]. http://doi.org/10.4225/09/58858a9bd6c6c
    Explore at:
    Dataset updated
    2016
    Dataset provided by
    Queensland University of Technology
    Authors
    QUT SAIVT: Speech, audio, image and video technologies research
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    SAIVT-Campus Dataset

    Overview

    The SAIVT-Campus Database is an abnormal event detection database captured on a university campus, where the abnormal events are caused by the onset of a storm. Contact or for more information.

    Licensing

    The SAIVT-Campus database is © 2012 QUT and is licensed under the .

    Attribution

    To attribute this database, please include the following citation:
    Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. available at .

    Acknowledging the Database in your Publications

    In addition to citing our paper, we kindly request that the following text be included in an acknowledgements section at the end of your publications:
    We would like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-Campus database for our research.

    Installing the SAIVT-Campus database

    After downloading and unpacking the archive, you should have the following structure:

    SAIVT-Campus 
    +-- LICENCE.txt 
    +-- README.txt 
    +-- test_dataset.avi 
    +-- training_dataset.avi 
    +-- Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf

    Notes

    The SAIVT-Campus dataset is captured at the Queensland University of Technology, Australia.

    It contains two video files from real-world surveillance footage without any actors:

    1. training_dataset.avi (the training dataset)
    2. test_dataset.avi (the test dataset).

    This dataset contains a mixture of crowd densities and it has been used in the following paper for abnormal event detection:

    • Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. Available at .
      This paper is also included with the database (Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf) Both video files are one hour in duration.

    The normal activities include pedestrians entering or exiting the building, entering or exiting a lecture theatre (yellow door), and going to the counter at the bottom right. The abnormal events are caused by a heavy rain outside, and include people running in from the rain, people walking towards the door to exit and turning back, wearing raincoats, loitering and standing near the door and overcrowded scenes. The rain happens only in the later part of the test dataset.

    As a result, we assume that the training dataset only contains the normal activities. We have manually made an annotation as below:

    • the training dataset does not have abnormal scenes
    • the test dataset separates into two parts: only normal activities occur from 00:00:00 to 00:47:16 abnormalities are present from 00:47:17 to 01:00:00. We annotate the time 00:47:17 as the start time for the abnormal events, as from this time on we have begun to observe people stop walking or turn back from walking towards the door to exit, which indicates that the rain outside the building has influenced the activities inside the building. Should you have any questions, please do not hesitate to contact .
  2. q

    SAIVT-Campus Dataset

    • researchdatafinder.qut.edu.au
    Updated Jun 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Simon Denman (2016). SAIVT-Campus Dataset [Dataset]. https://researchdatafinder.qut.edu.au/individual/n2531
    Explore at:
    Dataset updated
    Jun 30, 2016
    Dataset provided by
    Queensland University of Technology (QUT)
    Authors
    Dr Simon Denman
    Description

    SAIVT-Campus Dataset

    Overview

    The SAIVT-Campus Database is an abnormal event detection database captured on a university campus, where the abnormal events are caused by the onset of a storm. Contact Dr Simon Denman or Dr Jingxin Xu for more information.

    Licensing

    The SAIVT-Campus database is © 2012 QUT and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Australia License.

    Attribution

    To attribute this database, please include the following citation: Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. available at eprints.

    Acknowledging the Database in your Publications

    In addition to citing our paper, we kindly request that the following text be included in an acknowledgements section at the end of your publications: We would like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-Campus database for our research.

    Installing the SAIVT-Campus database

    After downloading and unpacking the archive, you should have the following structure:

    SAIVT-Campus +-- LICENCE.txt +-- README.txt +-- test_dataset.avi +-- training_dataset.avi +-- Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf

    Notes

    The SAIVT-Campus dataset is captured at the Queensland University of Technology, Australia.

    It contains two video files from real-world surveillance footage without any actors:

    training_dataset.avi (the training dataset)
    test_dataset.avi (the test dataset).
    

    This dataset contains a mixture of crowd densities and it has been used in the following paper for abnormal event detection:

    Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. Available at eprints. 
    This paper is also included with the database (Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf) Both video files are one hour in duration.
    

    The normal activities include pedestrians entering or exiting the building, entering or exiting a lecture theatre (yellow door), and going to the counter at the bottom right. The abnormal events are caused by a heavy rain outside, and include people running in from the rain, people walking towards the door to exit and turning back, wearing raincoats, loitering and standing near the door and overcrowded scenes. The rain happens only in the later part of the test dataset.

    As a result, we assume that the training dataset only contains the normal activities. We have manually made an annotation as below:

    the training dataset does not have abnormal scenes
    the test dataset separates into two parts: only normal activities occur from 00:00:00 to 00:47:16 abnormalities are present from 00:47:17 to 01:00:00. We annotate the time 00:47:17 as the start time for the abnormal events, as from this time on we have begun to observe people stop walking or turn back from walking towards the door to exit, which indicates that the rain outside the building has influenced the activities inside the building. Should you have any questions, please do not hesitate to contact Dr Jingxin Xu.
    
  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
QUT SAIVT: Speech, audio, image and video technologies research (2016). SAIVT-Campus Dataset [Dataset]. http://doi.org/10.4225/09/58858a9bd6c6c

SAIVT-Campus Dataset

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
2016
Dataset provided by
Queensland University of Technology
Authors
QUT SAIVT: Speech, audio, image and video technologies research
License

Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically

Description

SAIVT-Campus Dataset

Overview

The SAIVT-Campus Database is an abnormal event detection database captured on a university campus, where the abnormal events are caused by the onset of a storm. Contact or for more information.

Licensing

The SAIVT-Campus database is © 2012 QUT and is licensed under the .

Attribution

To attribute this database, please include the following citation:
Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. available at .

Acknowledging the Database in your Publications

In addition to citing our paper, we kindly request that the following text be included in an acknowledgements section at the end of your publications:
We would like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-Campus database for our research.

Installing the SAIVT-Campus database

After downloading and unpacking the archive, you should have the following structure:

SAIVT-Campus 
+-- LICENCE.txt 
+-- README.txt 
+-- test_dataset.avi 
+-- training_dataset.avi 
+-- Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf

Notes

The SAIVT-Campus dataset is captured at the Queensland University of Technology, Australia.

It contains two video files from real-world surveillance footage without any actors:

  1. training_dataset.avi (the training dataset)
  2. test_dataset.avi (the test dataset).

This dataset contains a mixture of crowd densities and it has been used in the following paper for abnormal event detection:

  • Xu, Jingxin, Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2012) Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In 9th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2012), 18-21 September 2012, Beijing, China. Available at .
    This paper is also included with the database (Xu2012 - Activity analysis in complicated scenes using DFT coefficients of particle trajectories.pdf) Both video files are one hour in duration.

The normal activities include pedestrians entering or exiting the building, entering or exiting a lecture theatre (yellow door), and going to the counter at the bottom right. The abnormal events are caused by a heavy rain outside, and include people running in from the rain, people walking towards the door to exit and turning back, wearing raincoats, loitering and standing near the door and overcrowded scenes. The rain happens only in the later part of the test dataset.

As a result, we assume that the training dataset only contains the normal activities. We have manually made an annotation as below:

  • the training dataset does not have abnormal scenes
  • the test dataset separates into two parts: only normal activities occur from 00:00:00 to 00:47:16 abnormalities are present from 00:47:17 to 01:00:00. We annotate the time 00:47:17 as the start time for the abnormal events, as from this time on we have begun to observe people stop walking or turn back from walking towards the door to exit, which indicates that the rain outside the building has influenced the activities inside the building. Should you have any questions, please do not hesitate to contact .
Search
Clear search
Close search
Google apps
Main menu