3 datasets found
  1. a

    Sonoma County Vegetation and Habitat Map (Vector Tiles - Labels)

    • hub.arcgis.com
    Updated Nov 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonoma County Ag + Open Space (2018). Sonoma County Vegetation and Habitat Map (Vector Tiles - Labels) [Dataset]. https://hub.arcgis.com/maps/e14ea25e6b984bcb948b7db320e32f95
    Explore at:
    Dataset updated
    Nov 2, 2018
    Dataset authored and provided by
    Sonoma County Ag + Open Space
    Area covered
    Description

    This is a vector tile service with labels for the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. Labels appear at scales greater than 1:10,000 and characterize stand height, stand canopy cover, stand map class, and stand impervious cover. This service is mean to be used in conjunction with the vector tile services of the polygon themselves (either the solid symbology service or the hollow symbology service). The key to the labels appears in the graphic below; the key to map class abbreviations can be found here. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8)The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

  2. a

    Sonoma County Vegetation and Habitat Map (Vector Tiles - Solid Colors)

    • hub.arcgis.com
    Updated Sep 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonoma County Ag + Open Space (2017). Sonoma County Vegetation and Habitat Map (Vector Tiles - Solid Colors) [Dataset]. https://hub.arcgis.com/maps/44d875e0799247429d328699a6e258ea
    Explore at:
    Dataset updated
    Sep 22, 2017
    Dataset authored and provided by
    Sonoma County Ag + Open Space
    Area covered
    Description

    This is a vector tile service of the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. It is mean to be used in conjunction with the vector tile service that provides labels for each polygon. There is an additional vector tile service that provides hollow outlines for the vegetation map if solid colors are not desired. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8) The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

  3. a

    Sonoma County Vegetation and Habitat Map (Vector Tiles - Hollow Outlines)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Sep 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonoma County Ag + Open Space (2017). Sonoma County Vegetation and Habitat Map (Vector Tiles - Hollow Outlines) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/sonomaopenspace::sonoma-county-vegetation-and-habitat-map-vector-tiles-hollow-outlines/explore
    Explore at:
    Dataset updated
    Sep 22, 2017
    Dataset authored and provided by
    Sonoma County Ag + Open Space
    Area covered
    Description

    This is a vector tile service of the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. It is mean to be used in conjunction with the vector tile service that provides labels for each polygon. There is an additional vector tile service that provides solid colored polygons for the vegetation map if hollow outlines are not desired. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8). The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sonoma County Ag + Open Space (2018). Sonoma County Vegetation and Habitat Map (Vector Tiles - Labels) [Dataset]. https://hub.arcgis.com/maps/e14ea25e6b984bcb948b7db320e32f95

Sonoma County Vegetation and Habitat Map (Vector Tiles - Labels)

Explore at:
Dataset updated
Nov 2, 2018
Dataset authored and provided by
Sonoma County Ag + Open Space
Area covered
Description

This is a vector tile service with labels for the fine scale vegetation and habitat map, to be used in web maps and GIS software packages. Labels appear at scales greater than 1:10,000 and characterize stand height, stand canopy cover, stand map class, and stand impervious cover. This service is mean to be used in conjunction with the vector tile services of the polygon themselves (either the solid symbology service or the hollow symbology service). The key to the labels appears in the graphic below; the key to map class abbreviations can be found here. The Sonoma County fine scale vegetation and habitat map is an 82-class vegetation map of Sonoma County with 212,391 polygons. The fine scale vegetation and habitat map represents the state of the landscape in 2013 and adheres to the National Vegetation Classification System (NVC). The map was designed to be used at scales of 1:5,000 and smaller. The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tD The final report for the fine scale vegetation map, containing methods and an accuracy assessment, is available here: https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9Class definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8)The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels. The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary. The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

Search
Clear search
Close search
Google apps
Main menu