2 datasets found
  1. Spire live and historical data

    • earth.esa.int
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Space Agency, Spire live and historical data [Dataset]. https://earth.esa.int/eogateway/catalog/spire-live-and-historical-data
    Explore at:
    Dataset authored and provided by
    European Space Agencyhttp://www.esa.int/
    License

    https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf

    Description

    The data collected by Spire from its more than 100 satellites launched into Low Earth Orbit (LEO) has a diverse range of applications, from analysis of global trade patterns and commodity flows to aircraft routing to weather forecasting. The data also provides interesting research opportunities on topics as varied as ocean currents and GNSS-based planetary boundary layer height. The following products can be requested: GNSS Polarimetric Radio Occultation (STRATOS) Novel Polarimetric Radio Occultation (PRO) measurements collected by three Spire satellites are available over 15 May 2023 to 30 November 2023. PRO differ from regular RO (described below) in that the H and V polarizations of the signal are available, as opposed to only Right-Handed Circularly Polarized (RHCP) signals in regular RO. The differential phase shift between H and V correlates with the presence of hydrometeors (ice crystals, rain, snow, etc.). When combined, the H and V information provides the same information on atmospheric thermodynamic properties as RO: temperature, humidity, and pressure, based on the signal’s bending angle. Various levels of the products are provided. GNSS Reflectometry (STRATOS) GNSS Reflectometry (GNSS-R) is a technique to measure Earth’s surface properties using reflections of GNSS signals in the form of a bistatic radar. Spire collects two types of GNSS-R data: Near-Nadir incidence LHCP reflections collected by the Spire GNSS-R satellites, and Grazing-Angle GNSS-R (i.e., low elevation angle) RHCP reflections collected by the Spire GNSS-RO satellites. The Near-Nadir GNSS-R collects DDM (Delay Doppler Map) reflectivity measurements. These are used to compute ocean wind / wave conditions and soil moisture over land. The Grazing-Angle GNSS-R collects 50 Hz reflectivity and additionally carrier phase observations. These are used for altimetry and characterization of smooth surfaces (such as ice and inland water). Derived Level 1 and Level 2 products are available, as well as some special Level 0 raw intermediate frequency (IF) data. Precise Orbit Determination SPIRE Precise Orbit Determination (POD) products are available over the period 1 January 2023 to 27 February 2023. POD measurements are derived from dual-frequency GNSS receivers onboard the satellites and processed using orbit determination algorithms to determine the positions and velocities of each Spire satellite. Various product types are available. Name Temporal coverage Spatial coverage Description Data format and content Application Polarimetric Radio Occultation (PRO) measurements 15 May 2023 to 31 May 2024 Global PRO measurements observe the properties of GNSS signals as they pass through by Earth's atmosphere, similar to regular RO measurements. The polarization state of the signals is recorded separately for H and V polarizations to provide information on the anisotropy of hydrometeors along the propagation path leoOrb.sp3. This file contains the estimated position, velocity and receiver clock error of a given Spire satellite after processing of the POD observation file proObs. Level 0 - Raw open loop carrier phase measurements at 50 Hz sampling for both linear polarization components (horizontal and vertical) of the occulted GNSS signal. h(v)(c)atmPhs. Level 1B - Atmospheric excess phase delay computed for each individual linear polarization component (hatmPhs, vatmPhs) and for the combined (“H” + “V”) signal (catmPhs). Also contains values for signal-to-noise ratio, transmitter and receiver positions and open loop model information. polPhs. Level 1C - Combines the information from the hatmPhs and vatmPhs files while removing phase continuities due to phase wrapping and navigation bit modulation. patmPrf. Level 2 - Bending angle, dry refractivity, and dry temperature as a function of mean sea level altitude and impact parameter derived from the “combined” excess phase delay (catmPhs) PRO measurements add a sensitivity to ice and precipitation content alongside the traditional RO measurements of the atmospheric temperature, pressure, and water vapor. 1 February 2024 to 31 March 2024 hdrPhs. Level 1D - High-Rate Doppler and Carrier Phase products providing high-rate GNSS signal measurements, including carrier phase, Doppler shift, and signal-to-noise ratio (SNR) from GNSS satellites. Near-Nadir GNSS Reflectometry (NN GNSS-R) measurements 1 October 2023 to 24 July 2024 Global Tracks of surface reflections as observed by the near-nadir pointing GNSS-R antennas, based on Delay Doppler Maps (DDMs). gbrRCS.nc. Level 1B - Along-track calibrated bistatic radar cross-sections measured by Spire conventional GNSS-R satellites. gbrNRCS.nc. Level 1B - Along-track calibrated bistatic and normalized radar cross-sections measured by Spire conven...

  2. F

    Spire live and historical data

    • fedeo.ceos.org
    • eocat.esa.int
    • +1more
    Updated Sep 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESA/ESRIN (2020). Spire live and historical data [Dataset]. https://fedeo.ceos.org/collections/Spire.live.and.historical.data?httpAccept=text/html
    Explore at:
    Dataset updated
    Sep 4, 2020
    Dataset authored and provided by
    ESA/ESRIN
    Measurement technique
    AIRSAFE, Imaging Spectrometers/Radiometers, SENSE
    Description

    The data collected by Spire from it's 100 satellites launched into Low Earth Orbit (LEO) has a diverse range of applications, from analysis of global trade patterns and commodity flows to aircraft routing to weather forecasting. The data also provides interesting research opportunities on topics as varied as ocean currents and GNSS-based planetary boundary layer height. The following products can be requested:

    GNSS Polarimetric Radio Occultation (STRATOS) Novel Polarimetric Radio Occultation (PRO) measurements collected by three Spire satellites are available over 15-May-2023 to 30-November-2023. PRO differ from regular RO (described below) in that the H and V polarizations of the signal are available, as opposed to only Right-Handed Circularly Polarized (RHCP) signals in regular RO. The differential phase shift between H and V correlates with the presence of hydrometeors (ice crystals, rain, snow, etc.). When combined, the H and V information provides the same information on atmospheric thermodynamic properties as RO: temperature, humidity, and pressure, based on the signal’s bending angle. Various levels of the products are provided.

    GNSS Reflectometry (STRATOS) GNSS Reflectometry (GNSS-R) is a technique to measure Earth’s surface properties using reflections of GNSS signals in the form of a bistatic radar. Spire collects two types of GNSS-R data: Near-Nadir incidence LHCP reflections collected by the Spire GNSS-R satellites, and Grazing-Angle GNSS-R (i.e., low elevation angle) RHCP reflections collected by the Spire GNSS-RO satellites. The Near-Nadir GNSS-R collects DDM (Delay Doppler Map) reflectivity measurements. These are used to compute ocean wind / wave conditions and soil moisture over land. The Grazing-Angle GNSS-R collects 50 Hz reflectivity and additionally carrier phase observations. These are used for altimetry and characterization of smooth surfaces (such as ice and inland water). Derived Level 1 and Level 2 products are available, as well as some special Level 0 raw intermediate frequency (IF) data. Historical grazing angle GNSS-R data are available from May 2019 to the present, while near-nadir GNSS-R data are available from December 2020 to the present.

    Name Temporal coverage Spatial coverage Description Data format and content Application Polarimetric Radio Occultation (PRO) measurements 15-May-2023 to 30-November-2023 Global PRO measurements observe the properties of GNSS signals as they pass through by Earth's atmosphere, similar to regular RO measurements. The polarization state of the signals is recorded separately for H and V polarizations to provide information on the anisotropy of hydrometeors along the propagation path. leoOrb.sp3. This file contains the estimated position, velocity and receiver clock error of a given Spire satellite after processing of the POD observation file PRO measurements add a sensitivity to ice and precipitation content alongside the traditional RO measurements of the atmospheric temperature, pressure, and water vapor. proObs. Level 0 - Raw open loop carrier phase measurements at 50 Hz sampling for both linear polarization components (horizontal and vertical) of the occulted GNSS signal. h(v)(c)atmPhs. Level 1B - Atmospheric excess phase delay computed for each individual linear polarization component (hatmPhs, vatmPhs) and for the combined (“H” + “V”) signal (catmPhs). Also contains values for signal-to-noise ratio, transmitter and receiver positions and open loop model information.
    polPhs. Level 1C - Combines the information from the hatmPhs and vatmPhs files while removing phase continuities due to phase wrapping and navigation bit modulation.
    patmPrf. Level 2 - Bending angle, dry refractivity, and dry temperature as a function of mean sea level altitude and impact parameter derived from the “combined” excess phase delay (catmPhs)
    Near-Nadir GNSS Reflectometry (NN GNSS-R) measurements 25-January-2024 to 24-July-2024 Global Tracks of surface reflections as observed by the near-nadir pointing GNSS-R antennas, based on Delay Doppler Maps (DDMs). gbrRCS.nc. Level 1B - Along-track calibrated bistatic radar cross-sections measured by Spire conventional GNSS-R satellites. NN GNSS-R measurements are used to measure ocean surface winds and characterize land surfaces for applications such as soil moisture, freeze/thaw monitoring, flooding detection, inland water body delineation, sea ice classification, etc. gbrNRCS.nc. Level 1B - Along-track calibrated bistatic and normalized radar cross-sections measured by Spire conventional GNSS-R satellites.
    gbrSSM.nc. Level 2 - Along-track SNR, reflectivity, and retrievals of soil moisture (and associated uncertainties) and probability of frozen ground.
    gbrOcn.nc. Level 2 - Along-track retrievals of mean square slope (MSS) of the sea surface, wind speed, sigma0, and associated uncertainties.
    Grazing angle GNSS Reflectometry (GA GNSS-R) measurements 25-January-2024 to 24-July-2024 Global Tracks of surface reflections as observed by the limb-facing RO antennas, based on open-loop tracking outputs: 50 Hz collections of accumulated I/Q observations. grzRfl.nc. Level 1B - Along-track SNR, reflectivity, phase delay (with respect to an open loop model) and low-level observables and bistatic radar geometries such as receiver, specular reflection, and the transmitter locations. GA GNSS-R measurements are used to 1) characterize land surfaces for applications such as sea ice classification, freeze/thaw monitoring, inland water body detection and delineation, etc., and 2) measure relative altimetry with dm-level precision for inland water bodies, river slopes, sea ice freeboard, etc., but also water vapor characterization from delay based on tropospheric delays. grzIce.nc. Level 2 - Along-track water vs sea ice classification, along with sea ice type classification.
    grzAlt.nc. Level 2 - Along-track phase-delay, ionosphere-corrected altimetry, tropospheric delay, and ancillary models (mean sea surface, tides).

    Additionally, the following products (better detailed in the ToA) can be requested but the acceptance is not guaranteed and shall be evaluated on a case-by-case basis: Other STRATOS measurements: profiles of the Earth’s atmosphere and ionosphere, from December 2018 ADS-B Data Stream: monthly subscription to global ADS-B satellite data, available from December 2018 AIS messages: AIS messages observed from Spire satellites (S-AIS) and terrestrial from partner sensor stations (T-AIS), monthly subscription available from June 2016

    The products are available as part of the Spire provision with worldwide coverage. All details about the data provision, data access conditions and quota assignment procedure are described in the _\(Terms of Applicability\) https://earth.esa.int/eogateway/documents/20142/37627/SPIRE-Terms-Of-Applicability.pdf/0dd8b3e8-05fe-3312-6471-a417c6503639 .

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
European Space Agency, Spire live and historical data [Dataset]. https://earth.esa.int/eogateway/catalog/spire-live-and-historical-data
Organization logo

Spire live and historical data

Explore at:
Dataset authored and provided by
European Space Agencyhttp://www.esa.int/
License

https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf

Description

The data collected by Spire from its more than 100 satellites launched into Low Earth Orbit (LEO) has a diverse range of applications, from analysis of global trade patterns and commodity flows to aircraft routing to weather forecasting. The data also provides interesting research opportunities on topics as varied as ocean currents and GNSS-based planetary boundary layer height. The following products can be requested: GNSS Polarimetric Radio Occultation (STRATOS) Novel Polarimetric Radio Occultation (PRO) measurements collected by three Spire satellites are available over 15 May 2023 to 30 November 2023. PRO differ from regular RO (described below) in that the H and V polarizations of the signal are available, as opposed to only Right-Handed Circularly Polarized (RHCP) signals in regular RO. The differential phase shift between H and V correlates with the presence of hydrometeors (ice crystals, rain, snow, etc.). When combined, the H and V information provides the same information on atmospheric thermodynamic properties as RO: temperature, humidity, and pressure, based on the signal’s bending angle. Various levels of the products are provided. GNSS Reflectometry (STRATOS) GNSS Reflectometry (GNSS-R) is a technique to measure Earth’s surface properties using reflections of GNSS signals in the form of a bistatic radar. Spire collects two types of GNSS-R data: Near-Nadir incidence LHCP reflections collected by the Spire GNSS-R satellites, and Grazing-Angle GNSS-R (i.e., low elevation angle) RHCP reflections collected by the Spire GNSS-RO satellites. The Near-Nadir GNSS-R collects DDM (Delay Doppler Map) reflectivity measurements. These are used to compute ocean wind / wave conditions and soil moisture over land. The Grazing-Angle GNSS-R collects 50 Hz reflectivity and additionally carrier phase observations. These are used for altimetry and characterization of smooth surfaces (such as ice and inland water). Derived Level 1 and Level 2 products are available, as well as some special Level 0 raw intermediate frequency (IF) data. Precise Orbit Determination SPIRE Precise Orbit Determination (POD) products are available over the period 1 January 2023 to 27 February 2023. POD measurements are derived from dual-frequency GNSS receivers onboard the satellites and processed using orbit determination algorithms to determine the positions and velocities of each Spire satellite. Various product types are available. Name Temporal coverage Spatial coverage Description Data format and content Application Polarimetric Radio Occultation (PRO) measurements 15 May 2023 to 31 May 2024 Global PRO measurements observe the properties of GNSS signals as they pass through by Earth's atmosphere, similar to regular RO measurements. The polarization state of the signals is recorded separately for H and V polarizations to provide information on the anisotropy of hydrometeors along the propagation path leoOrb.sp3. This file contains the estimated position, velocity and receiver clock error of a given Spire satellite after processing of the POD observation file proObs. Level 0 - Raw open loop carrier phase measurements at 50 Hz sampling for both linear polarization components (horizontal and vertical) of the occulted GNSS signal. h(v)(c)atmPhs. Level 1B - Atmospheric excess phase delay computed for each individual linear polarization component (hatmPhs, vatmPhs) and for the combined (“H” + “V”) signal (catmPhs). Also contains values for signal-to-noise ratio, transmitter and receiver positions and open loop model information. polPhs. Level 1C - Combines the information from the hatmPhs and vatmPhs files while removing phase continuities due to phase wrapping and navigation bit modulation. patmPrf. Level 2 - Bending angle, dry refractivity, and dry temperature as a function of mean sea level altitude and impact parameter derived from the “combined” excess phase delay (catmPhs) PRO measurements add a sensitivity to ice and precipitation content alongside the traditional RO measurements of the atmospheric temperature, pressure, and water vapor. 1 February 2024 to 31 March 2024 hdrPhs. Level 1D - High-Rate Doppler and Carrier Phase products providing high-rate GNSS signal measurements, including carrier phase, Doppler shift, and signal-to-noise ratio (SNR) from GNSS satellites. Near-Nadir GNSS Reflectometry (NN GNSS-R) measurements 1 October 2023 to 24 July 2024 Global Tracks of surface reflections as observed by the near-nadir pointing GNSS-R antennas, based on Delay Doppler Maps (DDMs). gbrRCS.nc. Level 1B - Along-track calibrated bistatic radar cross-sections measured by Spire conventional GNSS-R satellites. gbrNRCS.nc. Level 1B - Along-track calibrated bistatic and normalized radar cross-sections measured by Spire conven...

Search
Clear search
Close search
Google apps
Main menu