Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library
Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library
Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library
Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library
Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Droughts are natural occurring events in which dry conditions persist over time. Droughts are complex to characterize because they depend on water and energy balances at different temporal and spatial scales. The Standardized Precipitation Index (SPI) is used to analyze meteorological droughts. SPI estimates the deviation of precipitation from the long-term probability function at different time scales (e.g. 1, 3, 6, 9, or 12 months). SPI only uses monthly precipitation as an input, which can be helpful for characterizing meteorological droughts. Other variables should be included (e.g. temperature or evapotranspiration) in the characterization of other types of droughts (e.g. agricultural droughts).This layer shows the SPI index at different temporal periods calculated using the SPEI library in R and precipitation data from CHIRPS data set.Sources:Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS)SPEI R library