3 datasets found
  1. f

    NSL-KDD dataset results.

    • figshare.com
    xls
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila (2024). NSL-KDD dataset results. [Dataset]. http://doi.org/10.1371/journal.pone.0299666.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Computer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms. This methodology offers significant advantages and greatly differs from existing intrusion detection practices. The effectiveness of our method is demonstrated through trials on the Network Security Laboratory (NSL) and Canadian Institute for Cybersecurity (CIC) 2017 datasets, where the application of RNNs for intrusion detection shows substantial practical implications. Specifically, we achieved accuracy scores of 99.6% with Decision Tree, Random Forest, and CatBoost classifiers on the NSL dataset, and 99.8% and 99.9%, respectively, on the CIC 2017 dataset. By reversing the conventional sequence of training data with RNNs and then extracting features before applying classification algorithms, our approach provides a major shift in intrusion detection methodologies. This modification in the pipeline underscores the benefits of utilizing RNNs for feature extraction and data preprocessing, meeting the critical need to safeguard data security and communication freedom against ever-evolving network threats.

  2. f

    The accuracy result on NSL-KDD dataset.

    • plos.figshare.com
    xls
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila (2024). The accuracy result on NSL-KDD dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0299666.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Computer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms. This methodology offers significant advantages and greatly differs from existing intrusion detection practices. The effectiveness of our method is demonstrated through trials on the Network Security Laboratory (NSL) and Canadian Institute for Cybersecurity (CIC) 2017 datasets, where the application of RNNs for intrusion detection shows substantial practical implications. Specifically, we achieved accuracy scores of 99.6% with Decision Tree, Random Forest, and CatBoost classifiers on the NSL dataset, and 99.8% and 99.9%, respectively, on the CIC 2017 dataset. By reversing the conventional sequence of training data with RNNs and then extracting features before applying classification algorithms, our approach provides a major shift in intrusion detection methodologies. This modification in the pipeline underscores the benefits of utilizing RNNs for feature extraction and data preprocessing, meeting the critical need to safeguard data security and communication freedom against ever-evolving network threats.

  3. f

    Literature review comprising main studies.

    • figshare.com
    xls
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila (2024). Literature review comprising main studies. [Dataset]. http://doi.org/10.1371/journal.pone.0299666.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Computer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms. This methodology offers significant advantages and greatly differs from existing intrusion detection practices. The effectiveness of our method is demonstrated through trials on the Network Security Laboratory (NSL) and Canadian Institute for Cybersecurity (CIC) 2017 datasets, where the application of RNNs for intrusion detection shows substantial practical implications. Specifically, we achieved accuracy scores of 99.6% with Decision Tree, Random Forest, and CatBoost classifiers on the NSL dataset, and 99.8% and 99.9%, respectively, on the CIC 2017 dataset. By reversing the conventional sequence of training data with RNNs and then extracting features before applying classification algorithms, our approach provides a major shift in intrusion detection methodologies. This modification in the pipeline underscores the benefits of utilizing RNNs for feature extraction and data preprocessing, meeting the critical need to safeguard data security and communication freedom against ever-evolving network threats.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila (2024). NSL-KDD dataset results. [Dataset]. http://doi.org/10.1371/journal.pone.0299666.t006

NSL-KDD dataset results.

Related Article
Explore at:
46 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jun 21, 2024
Dataset provided by
PLOS ONE
Authors
Nasrullah Khan; Muhammad Ismail Mohmand; Sadaqat ur Rehman; Zia Ullah; Zahid Khan; Wadii Boulila
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Computer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms. This methodology offers significant advantages and greatly differs from existing intrusion detection practices. The effectiveness of our method is demonstrated through trials on the Network Security Laboratory (NSL) and Canadian Institute for Cybersecurity (CIC) 2017 datasets, where the application of RNNs for intrusion detection shows substantial practical implications. Specifically, we achieved accuracy scores of 99.6% with Decision Tree, Random Forest, and CatBoost classifiers on the NSL dataset, and 99.8% and 99.9%, respectively, on the CIC 2017 dataset. By reversing the conventional sequence of training data with RNNs and then extracting features before applying classification algorithms, our approach provides a major shift in intrusion detection methodologies. This modification in the pipeline underscores the benefits of utilizing RNNs for feature extraction and data preprocessing, meeting the critical need to safeguard data security and communication freedom against ever-evolving network threats.

Search
Clear search
Close search
Google apps
Main menu