Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The England species map was funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme. The map was created using satellite remote sensing data (Sentinel-2) and machine learning to classify common tree species in England. The model was trained to distinguish 35 common tree species, with minority species grouped into “Other broadleaf” or “Other conifer” classes for better classification performance. The final product comprises a species classification and confidence raster output.
The species map represents a predicted distribution of common tree species in England, produced using a time series of multispectral satellite remote sensing data (Sentinel-2) and machine learning. A classifier based on the XGBoost algorithm was trained to distinguish tree species, utilising a time-series of surface reflectance data and labelled training samples from the sub-compartment database (SCDB). To enhance classification performance, minority species with fewer than 1,000 training samples were grouped into broader categories, resulting in a total of 35 classes. Given the significant class imbalances, a sample weighting strategy was employed to guard against significant underfitting of the minority classes. Model evaluation demonstrated strong classification performance, with an overall accuracy of 89% and balanced class accuracy of 90%. Predictions were made at the pixel level and used to generate a species classification and confidence raster output. Field validation for Norway spruce within the Ips typographus demarcated area, confirmed a precision of 69%, aligning with test data results for this class. Additional validation using National Forest Inventory (NFI) data further reinforced model reliability, though accuracy was observed to be worse for underrepresented species.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The England species map was funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme. The map was created using satellite remote sensing data (Sentinel-2) and machine learning to classify common tree species in England. The model was trained to distinguish 35 common tree species, with minority species grouped into “Other broadleaf” or “Other conifer” classes for better classification performance. The final product comprises a species classification and confidence raster output.
The species map represents a predicted distribution of common tree species in England, produced using a time series of multispectral satellite remote sensing data (Sentinel-2) and machine learning. A classifier based on the XGBoost algorithm was trained to distinguish tree species, utilising a time-series of surface reflectance data and labelled training samples from the sub-compartment database (SCDB). To enhance classification performance, minority species with fewer than 1,000 training samples were grouped into broader categories, resulting in a total of 35 classes. Given the significant class imbalances, a sample weighting strategy was employed to guard against significant underfitting of the minority classes. Model evaluation demonstrated strong classification performance, with an overall accuracy of 89% and balanced class accuracy of 90%. Predictions were made at the pixel level and used to generate a species classification and confidence raster output. Field validation for Norway spruce within the Ips typographus demarcated area, confirmed a precision of 69%, aligning with test data results for this class. Additional validation using National Forest Inventory (NFI) data further reinforced model reliability, though accuracy was observed to be worse for underrepresented species.