1 dataset found
  1. d

    Tree Species Map England

    • environment.data.gov.uk
    • data.europa.eu
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Forestry Commission (2023). Tree Species Map England [Dataset]. https://environment.data.gov.uk/dataset/0c7a4e86-5fb2-4e13-867b-3d24c332f257
    Explore at:
    Dataset updated
    Aug 24, 2023
    Dataset authored and provided by
    Forestry Commission
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    The England species map was funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme. The map was created using satellite remote sensing data (Sentinel-2) and machine learning to classify common tree species in England. The model was trained to distinguish 35 common tree species, with minority species grouped into “Other broadleaf” or “Other conifer” classes for better classification performance. The final product comprises a species classification and confidence raster output.

    The species map represents a predicted distribution of common tree species in England, produced using a time series of multispectral satellite remote sensing data (Sentinel-2) and machine learning. A classifier based on the XGBoost algorithm was trained to distinguish tree species, utilising a time-series of surface reflectance data and labelled training samples from the sub-compartment database (SCDB). To enhance classification performance, minority species with fewer than 1,000 training samples were grouped into broader categories, resulting in a total of 35 classes. Given the significant class imbalances, a sample weighting strategy was employed to guard against significant underfitting of the minority classes. Model evaluation demonstrated strong classification performance, with an overall accuracy of 89% and balanced class accuracy of 90%. Predictions were made at the pixel level and used to generate a species classification and confidence raster output. Field validation for Norway spruce within the Ips typographus demarcated area, confirmed a precision of 69%, aligning with test data results for this class. Additional validation using National Forest Inventory (NFI) data further reinforced model reliability, though accuracy was observed to be worse for underrepresented species.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Forestry Commission (2023). Tree Species Map England [Dataset]. https://environment.data.gov.uk/dataset/0c7a4e86-5fb2-4e13-867b-3d24c332f257

Tree Species Map England

Explore at:
Dataset updated
Aug 24, 2023
Dataset authored and provided by
Forestry Commission
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Area covered
England
Description

The England species map was funded by DEFRA’s Natural Capital and Ecosystem Assessment (NCEA) programme. The map was created using satellite remote sensing data (Sentinel-2) and machine learning to classify common tree species in England. The model was trained to distinguish 35 common tree species, with minority species grouped into “Other broadleaf” or “Other conifer” classes for better classification performance. The final product comprises a species classification and confidence raster output.

The species map represents a predicted distribution of common tree species in England, produced using a time series of multispectral satellite remote sensing data (Sentinel-2) and machine learning. A classifier based on the XGBoost algorithm was trained to distinguish tree species, utilising a time-series of surface reflectance data and labelled training samples from the sub-compartment database (SCDB). To enhance classification performance, minority species with fewer than 1,000 training samples were grouped into broader categories, resulting in a total of 35 classes. Given the significant class imbalances, a sample weighting strategy was employed to guard against significant underfitting of the minority classes. Model evaluation demonstrated strong classification performance, with an overall accuracy of 89% and balanced class accuracy of 90%. Predictions were made at the pixel level and used to generate a species classification and confidence raster output. Field validation for Norway spruce within the Ips typographus demarcated area, confirmed a precision of 69%, aligning with test data results for this class. Additional validation using National Forest Inventory (NFI) data further reinforced model reliability, though accuracy was observed to be worse for underrepresented species.

Search
Clear search
Close search
Google apps
Main menu