Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains WorldPop's 100m resolution annual estimates of population density from the year 2000 to 2020. Usage notes: This layer is configured to be viewed only at a scale range for large-scale maps, i.e., zoomed into small areas of the world. Because the underlying data for this layer is relatively large and because raster pyramids cannot accurately represent aggregated population density, there are no pyramids. Thus, this layer may at times require 10 to 15 seconds to draw. We recommend using this layer in conjunction with WorldPop's 1-km resolution Population Density layer to create web maps that allow users to pan and zoom to wider areas; this web map contains an example of this combination. The population estimates in this layer are derived WorldPop's total population data, which use a Top-down unconstrained method which estimates the total population for each cell with a Random Forest-based dasymetric model (Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS one, 10(2), e0107042) and converts these values to population density by dividing the number of people in each pixel by the pixel surface area. This diagram visually describes this model that uses known populated locations to analyze imagery to find similarly populated locations. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.Recommended Citation: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. Accessed from https://worldpop.arcgis.com/arcgis/rest/services/WorldPop_Total_Population_100m/ImageServer, which was acquired from WorldPop in December 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains WorldPop's 100-meter resolution annual estimates of total population from the year 2000 to 2020. Usage notes:This layer is configured to be viewed only at a scale range for large-scale maps, i.e., zoomed into small areas of the world. Because the underlying data for this layer is relatively large and because raster pyramids cannot accurately represent aggregated population counts, there are no pyramids. Thus, this layer may at times require 10 to 15 seconds to draw.We recommend using this layer in in conjunction with WorldPop's 1-km resolution Total Population layer to create web maps that allow users to pan and zoom to wider areas; this web map contains an example of this combination. WorldPop estimated the total population for each cell in this data using a random forest-based dasymetric redistribution model (Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS one, 10(2), e0107042). The estimates in this layer use WorldPop's Top-down unconstrained method which estimates the total population for each cell with a Random Forest-based dasymetric model. This diagram visually describes this model that uses known populated locations to analyze imagery to find similarly populated locations. The DOI for the original WorldPop.org total population data is 10.5258/SOTON/WP00645.Recommended Citation: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. Accessed from https://worldpop.arcgis.com/arcgis/rest/services/WorldPop_Total_Population_1km/ImageServer, which was acquired from https://www.worldpop.org/doi/10.5258/SOTON/WP00645 on 15 Sep, 2021.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer contains WorldPop's 100m resolution annual estimates of population density from the year 2000 to 2020. Usage notes: This layer is configured to be viewed only at a scale range for large-scale maps, i.e., zoomed into small areas of the world. Because the underlying data for this layer is relatively large and because raster pyramids cannot accurately represent aggregated population density, there are no pyramids. Thus, this layer may at times require 10 to 15 seconds to draw. We recommend using this layer in conjunction with WorldPop's 1-km resolution Population Density layer to create web maps that allow users to pan and zoom to wider areas; this web map contains an example of this combination. The population estimates in this layer are derived WorldPop's total population data, which use a Top-down unconstrained method which estimates the total population for each cell with a Random Forest-based dasymetric model (Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS one, 10(2), e0107042) and converts these values to population density by dividing the number of people in each pixel by the pixel surface area. This diagram visually describes this model that uses known populated locations to analyze imagery to find similarly populated locations. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.Recommended Citation: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. Accessed from https://worldpop.arcgis.com/arcgis/rest/services/WorldPop_Total_Population_100m/ImageServer, which was acquired from WorldPop in December 2021.