2 datasets found
  1. AG News Classification Dataset

    • kaggle.com
    Updated Apr 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Anand (2020). AG News Classification Dataset [Dataset]. https://www.kaggle.com/amananandrai/ag-news-classification-dataset/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aman Anand
    Description

    AG's News Topic Classification Dataset

    ORIGIN

    AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .

    The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).

    DESCRIPTION

    The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600.

    The file classes.txt contains a list of classes corresponding to each label.

    The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is " ".

  2. h

    ag_news

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seonghyeon Lee, ag_news [Dataset]. https://huggingface.co/datasets/sh0416/ag_news
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Seonghyeon Lee
    Description

    AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search… See the full description on the dataset page: https://huggingface.co/datasets/sh0416/ag_news.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aman Anand (2020). AG News Classification Dataset [Dataset]. https://www.kaggle.com/amananandrai/ag-news-classification-dataset/tasks
Organization logo

AG News Classification Dataset

News articles of class "world", "sports", "business", and "Science"

Explore at:
92 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 20, 2020
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Aman Anand
Description

AG's News Topic Classification Dataset

ORIGIN

AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .

The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).

DESCRIPTION

The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600.

The file classes.txt contains a list of classes corresponding to each label.

The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is " ".

Search
Clear search
Close search
Google apps
Main menu