Imagenette is a subset of 10 easily classified classes from the Imagenet dataset. It was originally prepared by Jeremy Howard of FastAI. The objective behind putting together a small version of the Imagenet dataset was mainly because running new ideas/algorithms/experiments on the whole Imagenet take a lot of time.
This version of the dataset allows researchers/practitioners to quickly try out ideas and share with others. The dataset comes in three variants:
Note: The v2 config correspond to the new 70/30 train/valid split (released in Dec 6 2019).
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenette', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenette-full-size-v2-1.0.0.png" alt="Visualization" width="500px">
Imagenette is a subset of 10 easily classified classes from the Imagenet dataset. It was originally prepared by Jeremy Howard of FastAI. The objective behind putting together a small version of the Imagenet dataset was mainly because running new ideas/algorithms/experiments on the whole Imagenet take a lot of time. This version of the dataset allows researchers/practitioners to quickly try out ideas and share with others. The dataset comes in three variants: * Full size * 320 px * 160 px Note: The v2 config correspond to the new 70/30 train/valid split (released in Dec 6 2019).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Imagenette is a subset of 10 easily classified classes from the Imagenet dataset. It was originally prepared by Jeremy Howard of FastAI. The objective behind putting together a small version of the Imagenet dataset was mainly because running new ideas/algorithms/experiments on the whole Imagenet take a lot of time.
This version of the dataset allows researchers/practitioners to quickly try out ideas and share with others. The dataset comes in three variants:
Note: The v2 config correspond to the new 70/30 train/valid split (released in Dec 6 2019).
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imagenette', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/imagenette-full-size-v2-1.0.0.png" alt="Visualization" width="500px">