2 datasets found
  1. h

    pick-style-pixel-art

    • huggingface.co
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MaPO (2024). pick-style-pixel-art [Dataset]. https://huggingface.co/datasets/mapo-t2i/pick-style-pixel-art
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    MaPO
    License

    https://choosealicense.com/licenses/openrail++/https://choosealicense.com/licenses/openrail++/

    Description

    Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

    We propose MaPO, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper here.

      Developed by
    

    Jiwoo Hong* (KAIST AI) Sayak Paul* (Hugging Face) Noah Lee (KAIST AI) Kashif Rasul (Hugging Face) James Thorne (KAIST AI) Jongheon Jeong (Korea University)

      Dataset… See the full description on the dataset page: https://huggingface.co/datasets/mapo-t2i/pick-style-pixel-art.
    
  2. h

    pick-style-cartoon

    • huggingface.co
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MaPO (2024). pick-style-cartoon [Dataset]. https://huggingface.co/datasets/mapo-t2i/pick-style-cartoon
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    MaPO
    License

    https://choosealicense.com/licenses/openrail++/https://choosealicense.com/licenses/openrail++/

    Description

    Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

    We propose MaPO, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper here.

      Developed by
    

    Jiwoo Hong* (KAIST AI) Sayak Paul* (Hugging Face) Noah Lee (KAIST AI) Kashif Rasul (Hugging Face) James Thorne (KAIST AI) Jongheon Jeong (Korea University)

      Dataset… See the full description on the dataset page: https://huggingface.co/datasets/mapo-t2i/pick-style-cartoon.
    
  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MaPO (2024). pick-style-pixel-art [Dataset]. https://huggingface.co/datasets/mapo-t2i/pick-style-pixel-art

pick-style-pixel-art

mapo-t2i/pick-style-pixel-art

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jun 12, 2024
Dataset authored and provided by
MaPO
License

https://choosealicense.com/licenses/openrail++/https://choosealicense.com/licenses/openrail++/

Description

Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

We propose MaPO, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper here.

  Developed by

Jiwoo Hong* (KAIST AI) Sayak Paul* (Hugging Face) Noah Lee (KAIST AI) Kashif Rasul (Hugging Face) James Thorne (KAIST AI) Jongheon Jeong (Korea University)

  Dataset… See the full description on the dataset page: https://huggingface.co/datasets/mapo-t2i/pick-style-pixel-art.
Search
Clear search
Close search
Google apps
Main menu