2 datasets found
  1. h

    vstar_sub

    • huggingface.co
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zixu Cheng (2025). vstar_sub [Dataset]. https://huggingface.co/datasets/Cade921/vstar_sub
    Explore at:
    Dataset updated
    Apr 26, 2025
    Authors
    Zixu Cheng
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Dataset Card for Dataset Name

    V-STaR is a spatio-temporal reasoning benchmark for Video-LLMs, evaluating Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Github repository: V-STaR

      Dataset Details
    

    Comprehensive Dimensions: We evaluate Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Human Alignment: We conducted… See the full description on the dataset page: https://huggingface.co/datasets/Cade921/vstar_sub.

  2. h

    V-STaR

    • huggingface.co
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    V-STaR Benchmark (2025). V-STaR [Dataset]. https://huggingface.co/datasets/V-STaR-Bench/V-STaR
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    V-STaR Benchmark
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Dataset Card for Dataset Name

    V-STaR is a spatio-temporal reasoning benchmark for Video-LLMs, evaluating Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Github repository: V-STaR

      Dataset Details
    

    Comprehensive Dimensions: We evaluate Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Human Alignment: We conducted… See the full description on the dataset page: https://huggingface.co/datasets/V-STaR-Bench/V-STaR.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zixu Cheng (2025). vstar_sub [Dataset]. https://huggingface.co/datasets/Cade921/vstar_sub

vstar_sub

Cade921/vstar_sub

Explore at:
Dataset updated
Apr 26, 2025
Authors
Zixu Cheng
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

Dataset Card for Dataset Name

V-STaR is a spatio-temporal reasoning benchmark for Video-LLMs, evaluating Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Github repository: V-STaR

  Dataset Details

Comprehensive Dimensions: We evaluate Video-LLM’s spatio-temporal reasoning ability in answering questions explicitly in the context of “when”, “where”, and “what”. Human Alignment: We conducted… See the full description on the dataset page: https://huggingface.co/datasets/Cade921/vstar_sub.

Search
Clear search
Close search
Google apps
Main menu