2 datasets found
  1. Energy Efficiency Dataset

    • kaggle.com
    zip
    Updated Sep 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahiale Darlington (2017). Energy Efficiency Dataset [Dataset]. https://www.kaggle.com/elikplim/eergy-efficiency-dataset
    Explore at:
    zip(6370 bytes)Available download formats
    Dataset updated
    Sep 4, 2017
    Authors
    Ahiale Darlington
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Source:

    The dataset was created by Angeliki Xifara (angxifara '@' gmail.com, Civil/Structural Engineer) and was processed by Athanasios Tsanas (tsanasthanasis '@' gmail.com, Oxford Centre for Industrial and Applied Mathematics, University of Oxford, UK).

    Data Set Information:

    We perform energy analysis using 12 different building shapes simulated in Ecotect. The buildings differ with respect to the glazing area, the glazing area distribution, and the orientation, amongst other parameters. We simulate various settings as functions of the afore-mentioned characteristics to obtain 768 building shapes. The dataset comprises 768 samples and 8 features, aiming to predict two real valued responses. It can also be used as a multi-class classification problem if the response is rounded to the nearest integer.

    Attribute Information:

    The dataset contains eight attributes (or features, denoted by X1...X8) and two responses (or outcomes, denoted by y1 and y2). The aim is to use the eight features to predict each of the two responses.

    Specifically: X1 Relative Compactness X2 Surface Area X3 Wall Area X4 Roof Area X5 Overall Height X6 Orientation X7 Glazing Area X8 Glazing Area Distribution y1 Heating Load y2 Cooling Load

    Relevant Papers:

    A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012

    Citation Request:

    A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012 (the paper can be accessed from [Web Link])

    For further details on the data analysis methodology: A. Tsanas, 'Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning', D.Phil. thesis, University of Oxford, 2012 (which can be accessed from [Web Link])

  2. d

    Energy efficiency

    • data.world
    csv, zip
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCI (2023). Energy efficiency [Dataset]. https://data.world/uci/energy-efficiency
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Nov 10, 2023
    Authors
    UCI
    Description

    Source:

    The dataset was created by Angeliki Xifara (angxifara '@' gmail.com, Civil/Structural Engineer) and was processed by Athanasios Tsanas (tsanasthanasis '@' gmail.com, Oxford Centre for Industrial and Applied Mathematics, University of Oxford, UK).

    Data Set Information:

    We perform energy analysis using 12 different building shapes simulated in Ecotect. The buildings differ with respect to the glazing area, the glazing area distribution, and the orientation, amongst other parameters. We simulate various settings as functions of the afore-mentioned characteristics to obtain 768 building shapes. The dataset comprises 768 samples and 8 features, aiming to predict two real valued responses. It can also be used as a multi-class classification problem if the response is rounded to the nearest integer.

    Attribute Information:

    The dataset contains eight attributes (or features, denoted by X1...X8) and two responses (or outcomes, denoted by y1 and y2). The aim is to use the eight features to predict each of the two responses. Specifically:X1 Relative CompactnessX2 Surface AreaX3 Wall AreaX4 Roof AreaX5 Overall HeightX6 OrientationX7 Glazing AreaX8 Glazing Area Distributiony1 Heating Loady2 Cooling Load

    Relevant Papers:

    A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012

    Citation Request:

    A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012 (the paper can be accessed from ) For further details on the data analysis methodology: A. Tsanas, 'Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning', D.Phil. thesis, University of Oxford, 2012 (which can be accessed from )

    Source: http://archive.ics.uci.edu/ml/datasets/Energy+efficiency

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ahiale Darlington (2017). Energy Efficiency Dataset [Dataset]. https://www.kaggle.com/elikplim/eergy-efficiency-dataset
Organization logo

Energy Efficiency Dataset

This study looked into assessing the energy efficiency of buildings

Explore at:
zip(6370 bytes)Available download formats
Dataset updated
Sep 4, 2017
Authors
Ahiale Darlington
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Source:

The dataset was created by Angeliki Xifara (angxifara '@' gmail.com, Civil/Structural Engineer) and was processed by Athanasios Tsanas (tsanasthanasis '@' gmail.com, Oxford Centre for Industrial and Applied Mathematics, University of Oxford, UK).

Data Set Information:

We perform energy analysis using 12 different building shapes simulated in Ecotect. The buildings differ with respect to the glazing area, the glazing area distribution, and the orientation, amongst other parameters. We simulate various settings as functions of the afore-mentioned characteristics to obtain 768 building shapes. The dataset comprises 768 samples and 8 features, aiming to predict two real valued responses. It can also be used as a multi-class classification problem if the response is rounded to the nearest integer.

Attribute Information:

The dataset contains eight attributes (or features, denoted by X1...X8) and two responses (or outcomes, denoted by y1 and y2). The aim is to use the eight features to predict each of the two responses.

Specifically: X1 Relative Compactness X2 Surface Area X3 Wall Area X4 Roof Area X5 Overall Height X6 Orientation X7 Glazing Area X8 Glazing Area Distribution y1 Heating Load y2 Cooling Load

Relevant Papers:

A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012

Citation Request:

A. Tsanas, A. Xifara: 'Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools', Energy and Buildings, Vol. 49, pp. 560-567, 2012 (the paper can be accessed from [Web Link])

For further details on the data analysis methodology: A. Tsanas, 'Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning', D.Phil. thesis, University of Oxford, 2012 (which can be accessed from [Web Link])

Search
Clear search
Close search
Google apps
Main menu