100+ datasets found
  1. R

    Ball Video Segmentation Dataset

    • universe.roboflow.com
    zip
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cricket Ball Video Segmentation (2024). Ball Video Segmentation Dataset [Dataset]. https://universe.roboflow.com/cricket-ball-video-segmentation/ball-video-segmentation
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    Cricket Ball Video Segmentation
    Variables measured
    Ball Pitch Net Bounding Boxes
    Description

    Ball Video Segmentation

    ## Overview
    
    Ball Video Segmentation is a dataset for object detection tasks - it contains Ball Pitch Net annotations for 498 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
  2. P

    DAVIS Dataset

    • paperswithcode.com
    Updated Apr 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federico Perazzi; Jordi Pont-Tuset; Brian McWilliams; Luc van Gool; Markus Gross; Alexander Sorkine-Hornung (2021). DAVIS Dataset [Dataset]. https://paperswithcode.com/dataset/davis
    Explore at:
    Dataset updated
    Apr 28, 2021
    Authors
    Federico Perazzi; Jordi Pont-Tuset; Brian McWilliams; Luc van Gool; Markus Gross; Alexander Sorkine-Hornung
    Description

    The Densely Annotation Video Segmentation dataset (DAVIS) is a high quality and high resolution densely annotated video segmentation dataset under two resolutions, 480p and 1080p. There are 50 video sequences with 3455 densely annotated frames in pixel level. 30 videos with 2079 frames are for training and 20 videos with 1376 frames are for validation.

  3. i

    OVOS Occluded Video Object Segmentation dataset

    • ieee-dataport.org
    • researchdata.edu.au
    Updated Jul 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    bo miao (2022). OVOS Occluded Video Object Segmentation dataset [Dataset]. https://ieee-dataport.org/documents/ovos-occluded-video-object-segmentation-dataset
    Explore at:
    Dataset updated
    Jul 18, 2022
    Authors
    bo miao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Semi-supervised video object segmentation aims to leverage the ground truth object masks given for the first frame to segment video sequences at the pixel level. OVOS is a dataset to evaluate the performance of video object segmentation under occlusions.

  4. m

    Flood Amateur Video for Semantic Segmentation Dataset

    • data.mendeley.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Naili Suri Intizhami (2024). Flood Amateur Video for Semantic Segmentation Dataset [Dataset]. http://doi.org/10.17632/3kzr8mt8s2.5
    Explore at:
    Dataset updated
    May 16, 2024
    Authors
    Naili Suri Intizhami
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is flood data in the city of Parepare, South Sulawesi Province, which contains video data collected from social media Instagram. This dataset was created to develop deep learning methods for recognizing floods and surrounding objects, specializing in semantic segmentation methods. This dataset consists of three folders, namely raw video data collected from Instagram, image data resulting from splitting the video into several images, and annotation data containing images that have been color-labeled according to their objects. There are 6 object classifications based on color labels, namely: floods (blue light), buildings (red), plants (green), people (sage), vehicles (orange), and sky (dark blue). This dataset has data in image (JPEG/PNG) and video (MP4) formats. This dataset is suitable for object recognition tasks with the semantic segmentation method. In addition, because this dataset contains original data in the form of videos and images, it can be developed for other purposes in the future. As a note, if you intend to use this dataset, please ensure that you comply with applicable copyright, privacy, and regulatory requirements. If you intend to read the paper about this dataset, please visit this link: https://doi.org/10.1016/j.dib.2023.109768

  5. O

    HVIS Dataset (Human Video Instance Segmentation Dataset)

    • opendatalab.com
    zip
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Northwestern University (2023). HVIS Dataset (Human Video Instance Segmentation Dataset) [Dataset]. https://opendatalab.com/OpenDataLab/HVIS_Dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Northwestern University
    Tsinghua University
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    We propose a new benchmark called Human Video Instance Segmentation (HVIS), which focuses on complex real-world scenarios with sufficient human instance masks and identities. Our dataset contains 805 videos with 1447 detailedly annotated human instances. It also includes various overlapping scenes, which integrates into the most challenging video dataset related to humans.

  6. T

    youtube_vis

    • tensorflow.org
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). youtube_vis [Dataset]. https://www.tensorflow.org/datasets/catalog/youtube_vis
    Explore at:
    Dataset updated
    Dec 6, 2022
    Area covered
    YouTube
    Description

    Youtube-vis is a video instance segmentation dataset. It contains 2,883 high-resolution YouTube videos, a per-pixel category label set including 40 common objects such as person, animals and vehicles, 4,883 unique video instances, and 131k high-quality manual annotations.

    The YouTube-VIS dataset is split into 2,238 training videos, 302 validation videos and 343 test videos.

    No files were removed or altered during preprocessing.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('youtube_vis', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  7. P

    Panoramic Video Panoptic Segmentation Dataset Dataset

    • paperswithcode.com
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jieru Mei; Alex Zihao Zhu; Xinchen Yan; Hang Yan; Siyuan Qiao; Yukun Zhu; Liang-Chieh Chen; Henrik Kretzschmar; Dragomir Anguelov (2022). Panoramic Video Panoptic Segmentation Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/panoramic-video-panoptic-segmentation-dataset
    Explore at:
    Dataset updated
    Jun 14, 2022
    Authors
    Jieru Mei; Alex Zihao Zhu; Xinchen Yan; Hang Yan; Siyuan Qiao; Yukun Zhu; Liang-Chieh Chen; Henrik Kretzschmar; Dragomir Anguelov
    Description

    Panoramic Video Panoptic Segmentation Dataset is a large-scale dataset that offers high-quality panoptic segmentation labels for autonomous driving. The dataset has labels for 28 semantic categories and 2,860 temporal sequences that were captured by five cameras mounted on autonomous vehicles driving in three different geographical locations, leading to a total of 100k labeled camera images.

  8. P

    YouTube-VOS 2018 Dataset

    • paperswithcode.com
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ning Xu; Linjie Yang; Yuchen Fan; Dingcheng Yue; Yuchen Liang; Jianchao Yang; Thomas S. Huang (2024). YouTube-VOS 2018 Dataset [Dataset]. https://paperswithcode.com/dataset/youtube-vos
    Explore at:
    Dataset updated
    Jul 31, 2024
    Authors
    Ning Xu; Linjie Yang; Yuchen Fan; Dingcheng Yue; Yuchen Liang; Jianchao Yang; Thomas S. Huang
    Area covered
    YouTube
    Description

    Youtube-VOS is a Video Object Segmentation dataset that contains 4,453 videos - 3,471 for training, 474 for validation, and 508 for testing. The training and validation videos have pixel-level ground truth annotations for every 5th frame (6 fps). It also contains Instance Segmentation annotations. It has more than 7,800 unique objects, 190k high-quality manual annotations and more than 340 minutes in duration.

  9. Long Videos

    • kaggle.com
    Updated Oct 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GVC@LSU (2020). Long Videos [Dataset]. https://www.kaggle.com/gvclsu/long-videos/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 16, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GVC@LSU
    Description

    A semi-supervised video object segmentation dataset containing long videos. Released with NeurIPS 2020 paper "Video Object Segmentation with Adaptive Feature Bank and Uncertain-Region Refinement".

    We randomly selected three videos from the Internet, that are longer than 1.5K frames and have its main objects continuously appearing. Each video has 20 uniformly sampled frames manually annotated for evaluation. - blueboy: 2406 frames. - dressage 3589 frames. - rat: 1416 frames.

  10. s

    Video Object Instance Segmentation Dataset

    • hmn.shaip.com
    • da.shaip.com
    • +2more
    json
    Updated Dec 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaip (2024). Video Object Instance Segmentation Dataset [Dataset]. https://hmn.shaip.com/offerings/specific-object-contour-segmentation-datasets/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 25, 2024
    Dataset authored and provided by
    Shaip
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Is Taws Nem sau cov yeeb yaj kiab video nrog qhov nruab nrab ntev nyob ib puag ncig 10s, thiab kev daws teeb meem ntau dua 1920 x 1080.

  11. Water Segmentation Dataset

    • kaggle.com
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GVC@LSU (2020). Water Segmentation Dataset [Dataset]. https://www.kaggle.com/datasets/gvclsu/water-segmentation-dataset/suggestions?status=pending&yourSuggestions=true
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GVC@LSU
    Description

    Description

    This dataset is designed for water segmentation in images and videos. We follow the format of the DAVIS dataset, which has been widely adopted in video object segmentation (VOS) benchmarks.

    Specifically, JPEGImages contains water-related frames, and Annotations contains the corresponding groundtruth masks. train.txt lists the names of the training sets, and val.txt lists the names of the evaluation videos.

    We have two versions here: water_v1 and water_v2. We recommend you use the newest one, water_v2.

    Citations

    @article{liang2020waternet, title={WaterNet: An adaptive matching pipeline for segmenting water with volatile appearance}, author={Liang, Yongqing and Jafari, Navid and Luo, Xing and Chen, Qin and Cao, Yanpeng and Li, Xin}, journal={Computational Visual Media}, pages={1--14}, year={2020}, publisher={Springer} }

  12. P

    VISOR - Semi supervised video object segmentation Dataset

    • paperswithcode.com
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmad Darkhalil; Dandan Shan; Bin Zhu; Jian Ma; Amlan Kar; Richard Higgins; Sanja Fidler; David Fouhey; Dima Damen (2022). VISOR - Semi supervised video object segmentation Dataset [Dataset]. https://paperswithcode.com/dataset/visor
    Explore at:
    Dataset updated
    Jul 7, 2022
    Authors
    Ahmad Darkhalil; Dandan Shan; Bin Zhu; Jian Ma; Amlan Kar; Richard Higgins; Sanja Fidler; David Fouhey; Dima Damen
    Description

    VISOR is a dataset of pixel annotations and a benchmark suite for segmenting hands and active objects in egocentric video. VISOR annotates videos from EPIC-KITCHENS, and it contains 272K manual semantic masks of 257 object classes, 9.9M interpolated dense masks, and 67K hand-object relations, covering 36 hours of 179 untrimmed videos.

  13. t

    YouTube-VOS Dataset - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). YouTube-VOS Dataset - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/youtube-vos-dataset
    Explore at:
    Dataset updated
    Dec 2, 2024
    Area covered
    YouTube
    Description

    The YouTube-VOS dataset is a sequence-to-sequence video object segmentation dataset, with 1000 videos and 1000 frames per video.

  14. t

    The 2018 Davis Challenge on Video Object Segmentation - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). The 2018 Davis Challenge on Video Object Segmentation - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/the-2018-davis-challenge-on-video-object-segmentation
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The 2018 davis challenge on video object segmentation

  15. P

    MeViS Dataset

    • library.toponeai.link
    • paperswithcode.com
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henghui Ding; Chang Liu; Shuting He; Xudong Jiang; Chen Change Loy (2025). MeViS Dataset [Dataset]. https://library.toponeai.link/dataset/mevis
    Explore at:
    Dataset updated
    Apr 6, 2025
    Authors
    Henghui Ding; Chang Liu; Shuting He; Xudong Jiang; Chen Change Loy
    Description

    MeViS is a large-scale dataset for motion expressions guided video segmentation, which focuses on segmenting objects in video content based on a sentence describing the motion of the objects. The dataset contains numerous motion expressions to indicate target objects in complex environments.

  16. SOCRATES Plittersdorf Instance Segmentation Dataset

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Sep 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timm Haucke; Timm Haucke; Volker Steinhage; Volker Steinhage (2022). SOCRATES Plittersdorf Instance Segmentation Dataset [Dataset]. http://doi.org/10.5281/zenodo.7035934
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Timm Haucke; Timm Haucke; Volker Steinhage; Volker Steinhage
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A subset of video frames captured by the SOCRATES stereo camera trap in a wildlife park in Bonn, Germany between February and July of 2022, with corresponding instance segmentation annotations in the COCO format.

  17. P

    YouTube-VIS 2019 Dataset

    • paperswithcode.com
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linjie Yang; Yuchen Fan; Ning Xu (2024). YouTube-VIS 2019 Dataset [Dataset]. https://paperswithcode.com/dataset/youtubevis
    Explore at:
    Dataset updated
    Mar 21, 2024
    Authors
    Linjie Yang; Yuchen Fan; Ning Xu
    Area covered
    YouTube
    Description

    YouTubeVIS is a new dataset tailored for tasks like simultaneous detection, segmentation and tracking of object instances in videos and is collected based on the current largest video object segmentation dataset YouTubeVOS.

  18. Data from: Deep learning approaches to surgical video segmentation and...

    • figshare.com
    xlsx
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devanish Kamtam (2025). Deep learning approaches to surgical video segmentation and object detection: A Scoping Review [Dataset]. http://doi.org/10.6084/m9.figshare.28418759.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Devanish Kamtam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository includes supplementary data supporting our scoping review on deep learning for surgical video segmentation and object detection.

  19. i

    Dynamic Coordination and Temporal Enhancement for Referring Video Object...

    • ieee-dataport.org
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    tra Sina (2025). Dynamic Coordination and Temporal Enhancement for Referring Video Object Segmentation [Dataset]. https://ieee-dataport.org/documents/dynamic-coordination-and-temporal-enhancement-referring-video-object-segmentation
    Explore at:
    Dataset updated
    May 25, 2025
    Authors
    tra Sina
    Description

    model parameter

  20. t

    Occluded Video Instance Segmentation

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Occluded Video Instance Segmentation [Dataset]. https://service.tib.eu/ldmservice/dataset/occluded-video-instance-segmentation
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    Occluded video instance segmentation requires consistently segmenting and tracking objects over time. Due to the quadratic dependency on input size, directly applying self-attention to occluded video instance segmentation with high-resolution input features poses significant challenges, often leading to insufficient GPU memory capacity.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cricket Ball Video Segmentation (2024). Ball Video Segmentation Dataset [Dataset]. https://universe.roboflow.com/cricket-ball-video-segmentation/ball-video-segmentation

Ball Video Segmentation Dataset

ball-video-segmentation

ball-video-segmentation-dataset

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Dec 31, 2024
Dataset authored and provided by
Cricket Ball Video Segmentation
Variables measured
Ball Pitch Net Bounding Boxes
Description

Ball Video Segmentation

## Overview

Ball Video Segmentation is a dataset for object detection tasks - it contains Ball Pitch Net annotations for 498 images.

## Getting Started

You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
Search
Clear search
Close search
Google apps
Main menu