100+ datasets found
  1. d

    Seattle Parks and Recreation GIS Map Layer Web Services URL - View Points

    • catalog.data.gov
    • data.seattle.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - View Points [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-view-points-86b92
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.seattle.gov
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations View Points dataset.

  2. a

    OpenStreetMap Address Points for Europe

    • jacs-esri-training.opendata.arcgis.com
    • portal-esri-de.opendata.arcgis.com
    • +3more
    Updated Oct 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smoore2_osm (2020). OpenStreetMap Address Points for Europe [Dataset]. https://jacs-esri-training.opendata.arcgis.com/items/322415cea6794c3b83dd682418b27b92
    Explore at:
    Dataset updated
    Oct 28, 2020
    Dataset authored and provided by
    smoore2_osm
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Note: updates to this beta layer are currently paused while we sync new versions of the OSM layers for Europe.This feature layer provides access to OpenStreetMap (OSM) address point data for Europe, which is updated every 5 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenities, shops and other point features that have detailed address data, defined as a query against the hosted feature layer (i.e. addr:housenumber and addr:street is not blank).Zoom in to large scales (e.g. Neighborhood level or 1:20k scale) to see the address features display. You can click on a feature to get the name of the feature (if available). The name of the feature will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.

  3. InterAgencyFirePerimeterHistory All Years View

    • data-nifc.opendata.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +7more
    Updated Jun 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Interagency Fire Center (2022). InterAgencyFirePerimeterHistory All Years View [Dataset]. https://data-nifc.opendata.arcgis.com/datasets/nifc::interagencyfireperimeterhistory-all-years-view/explore
    Explore at:
    Dataset updated
    Jun 18, 2022
    Dataset authored and provided by
    National Interagency Fire Centerhttps://www.nifc.gov/
    Area covered
    Description

    Interagency Wildland Fire Perimeter History (IFPH) Overview This national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2024 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history (WFIGS pull for updates began 2022)USDA FS Regional Fire History Data (WFIGS pull for updates began 2024)BLM Fire Planning and Fuels (WFIGS pull for updates began 2020)National Park Service - Includes Prescribed Burns (WFIGS pull for updates began 2020)Fish and Wildlife Service (WFIGS pull for updates began 2024)Bureau of Indian Affairs (Incomplete, 2017-2018 from BIA, WFIGS pull for updates began 2020)CalFire FRAS - Includes Prescribed Burns (CALFIRE only source, non-fed fires)WFIGS - updates included since mid-2020, unless otherwise noted Data LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.Attributes This dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer maintained by IrWIN. (This unique identifier may NOT replace the GeometryID core attribute) FORID - Unique identifier assigned to each incident record in the Fire Occurence Data Records system. (This unique identifier may NOT replace the GeometryID core attribute) INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name. FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT). AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin. SOURCE - System/agency source of record from which the perimeter came. DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy. MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Other GIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9 UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001 LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456. UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMP COMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or Unknown GEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID). Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4,781 Records thru 2021), other federal sources for AK data removed. No RX data included.CA: GEOID = OBJECT ID of downloaded file geodatabase (8,480 Records, federal fires removed, includes RX. Significant cleanup occurred between 2023 and 2024 data pulls resulting in fewer perimeters).FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2,959 Records), includes RX.BIA: GEOID = "FireID" 2017/2018 data (382 records). No RX data included.NPS: GEOID = EVENT ID 15,237 records, includes RX. In 2024/2023 dataset was reduced by combining singlepart to multpart based on valid Irwin, FORID or Unique Fire IDs. RX data included.BLM: GEOID = GUID from BLM FPER (23,730 features). No RX data included.USFS: GEOID=GLOBALID from EDW records (48,569 features), includes RXWFIGS: GEOID=polySourceGlobalID (9724 records added or replaced agency record since mid-2020)Attempts to repair Unique Fire ID not made. Attempts to repair dates not made. Verified all IrWIN IDs and FODRIDs present via joins and cross checks to the respective dataset. Stripped leading and trailing spaces, fixed empty values to

  4. A

    Seattle Parks and Recreation GIS Map Layer Shapefile - View Points

    • data.amerigeoss.org
    csv, json, kml, zip
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2018). Seattle Parks and Recreation GIS Map Layer Shapefile - View Points [Dataset]. https://data.amerigeoss.org/id/dataset/seattle-parks-and-recreation-gis-map-layer-view-points
    Explore at:
    kml, csv, json, zipAvailable download formats
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    United States
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation GIS Map Layer Shapefile - View Points

    Shapefile - This Seattle Parks and Recreation ARCGIS park feature map layer was exported from SPU ARCGIS and converted to a shapefile then manually uploaded to data.seattle.gov via Socrata.

    OR

    Web Services - Live "read only" data connection ESRI web services URL: http://gisrevprxy.seattle.gov/arcgis/rest/services/DPR_EXT/ParksExternalWebsite/MapServer/54

  5. d

    Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • search.dataone.org
    • dataone.org
    • +1more
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linchao Luo; Fernanda Leite (2024). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Linchao Luo; Fernanda Leite
    Time period covered
    Jun 17, 2024 - Jun 20, 2024
    Area covered
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu. We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  6. n

    IRWIN Data Service User's Guide ( 20190325)

    • prep-response-portal.napsgfoundation.org
    • hub.arcgis.com
    • +2more
    Updated Nov 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2019). IRWIN Data Service User's Guide ( 20190325) [Dataset]. https://prep-response-portal.napsgfoundation.org/documents/29d7b53aecc1491b9d42fd559368b22f
    Explore at:
    Dataset updated
    Nov 5, 2019
    Dataset authored and provided by
    NAPSG Foundation
    Description

    IntroductionIRWIN ArcGIS Online GeoPlatform Services The Integrated Reporting of Wildland-Fire Information (IRWIN) Production data is replicated every 60 seconds to the ArcGIS Online GeoPlatform organization so that read-only views can be provided for consumers. This replicated view is called the hosted datastore. The “IRWIN Data” group is a set of Feature Layer views based on the replicated IRWIN layers. These feature layers provide a near real-time feed of all valid IRWIN data. All incidents that have been shared through the integration service since May 20, 2014 are available through this service. The incident data provides the location of existing fires, size, conditions and several other attributes that help classify fires. The IRWIN Data service allows users to create a web map, share it with their organization, or pull it into ArcMap or ArcGIS Pro for more in-depth analysis.InstructionsTo allow the emergency management GIS staff to join the IRWIN Data group, they will need to set up an ArcGIS Online account through our account manager. Please send the response to Samantha Gibbes (Samantha.C.Gibbes@saic.com) and Kayloni Ahtong (kayloni_ahtong@ios.doi.gov). Use the below template and fill in each part as best as possible, where the point of contact (POC) is the person responsible for the account.Reply Email Body: The (name of application) application requests the following user account and access to the IRWIN Data group.POC Name: First name Last name and titlePOC Email: Username: <>_irwin (choose a username, something short, followed by _irwin)Business Justification: Once you are set up with the account, I will coordinate a call to go over any questions.

  7. GeoForm (Deprecated)

    • data-salemva.opendata.arcgis.com
    • noveladata.com
    • +1more
    Updated Jul 2, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). GeoForm (Deprecated) [Dataset]. https://data-salemva.opendata.arcgis.com/items/931653256fd24301a84fc77955914a82
    Explore at:
    Dataset updated
    Jul 2, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  8. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  9. p

    Open Street Map Medical Facilities for Pacific Region

    • pacificgeoportal.com
    • digital-earth-pacificcore.hub.arcgis.com
    Updated Oct 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Open Street Map Medical Facilities for Pacific Region [Dataset]. https://www.pacificgeoportal.com/maps/7c3dbd2121a84667bfb3477e53628084
    Explore at:
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This web map is a subset of OpenStreetMap (OSM) point data of medical facilities for Australia and Oceania for the Pacific Region, which is updated every 15 minutes with the latest edits. You can access the Source Feature Service from here. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenity features defined as a query against the hosted feature layer where the amenity value is any of 'hospital', 'clinic', 'doctors', or 'pharmacy'.In OSM, amenities are useful and important facilities for visitors and residents, such as hospitals and clinics. These features are identified with an amenity tag. There are thousands of different tag values used in the OSM database. In this feature layer, unique symbols are used for the most common amenity tags used for medical facilities.Zoom in to large scales (e.g. Neighborhood level or 1:20k scale) to see the amenity features display. You can click on a feature to get the name of the amenity. The name of the amenity will display by default at very large scales (e.g. Building level of 1:2k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this medical facilities layer displaying just one or two amenity types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. amenity is hospital), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri will publish a few such layers (e.g. Places of Worship, Schools, and Parking) that are ready to use, but not for every type of amenity.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.

  10. p

    Building Point Classification - New Zealand

    • pacificgeoportal.com
    • hub.arcgis.com
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2023). Building Point Classification - New Zealand [Dataset]. https://www.pacificgeoportal.com/content/ebc54f498df94224990cf5f6598a5665
    Explore at:
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  11. Digital Geologic-GIS Map of the Point Lookout Quadrangle, Colorado (NPS,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Point Lookout Quadrangle, Colorado (NPS, GRD, GRI, MEVE, POLO digital map) adapted from a National Park Service geologic map by Griffitts (1999) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-point-lookout-quadrangle-colorado-nps-grd-gri-meve-polo-di
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado
    Description

    The Digital Geologic-GIS Map of the Point Lookout Quadrangle, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (polo_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (polo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (polo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (meve_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (meve_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (polo_geology_metadata_faq.pdf). Please read the meve_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: National Park Service. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (polo_geology_metadata.txt or polo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. WSDOT - GIS Point Feature Class Template

    • data-wa-geoservices.opendata.arcgis.com
    • geo.wa.gov
    • +2more
    Updated Jan 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2020). WSDOT - GIS Point Feature Class Template [Dataset]. https://data-wa-geoservices.opendata.arcgis.com/datasets/WSDOT::wsdot-gis-point-feature-class-template
    Explore at:
    Dataset updated
    Jan 16, 2020
    Dataset provided by
    Washington State Department of Transportationhttps://wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WSDOT template for Esri file geodatabase point feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.

  13. D

    Detroit Street View Terrestrial LiDAR (2020-2022)

    • detroitdata.org
    • data.detroitmi.gov
    • +1more
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). Detroit Street View Terrestrial LiDAR (2020-2022) [Dataset]. https://detroitdata.org/dataset/detroit-street-view-terrestrial-lidar-2020-2022
    Explore at:
    csv, geojson, zip, gpkg, gdb, arcgis geoservices rest api, kml, xlsx, html, txtAvailable download formats
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description

    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.

    Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.

    Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.

    LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.

    Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3

    DSV Logo

  14. d

    CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010)

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig Rasmussen; Matej Durcik (2021). CJCZO -- GIS/Map Data -- EEMT -- Santa Catalina Mountains -- (2010-2010) [Dataset]. https://search.dataone.org/view/sha256%3Af79c5b6ae39494aa0732981635ad3e39b5f731343ea03de995bc59a1c67ceb6b
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Craig Rasmussen; Matej Durcik
    Time period covered
    Jan 1, 2010 - Dec 31, 2010
    Area covered
    Description

    Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Catalina Mountains by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).

  15. a

    Scenic Viewpoint

    • data-trpa.opendata.arcgis.com
    • tahoeopendata.org
    Updated Jul 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tahoe Regional Planning Agency (2021). Scenic Viewpoint [Dataset]. https://data-trpa.opendata.arcgis.com/datasets/scenic-viewpoint
    Explore at:
    Dataset updated
    Jul 28, 2021
    Dataset authored and provided by
    Tahoe Regional Planning Agency
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Description

    Scenic threshold data spatial viewpoint site data. This dataset joins to the scenic viewpoint tabular dataset by the 'id' field.

  16. a

    WA Public Land Survey Points

    • hub.arcgis.com
    • geo.wa.gov
    • +4more
    Updated Mar 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Department of Natural Resources (2017). WA Public Land Survey Points [Dataset]. https://hub.arcgis.com/datasets/27e03ae584dc403fbc5308e12423d54f
    Explore at:
    Dataset updated
    Mar 13, 2017
    Dataset authored and provided by
    Washington State Department of Natural Resources
    Area covered
    Description

    The Point layer covers the State of Washington with a variety of different types of locations. The great majority of Points, point type 1, Corner Point, are located at the corners, or angle points, of Legal Description and Parcel areas. (See the metadata for Legal Description and Parcel.) Corner Points can represent differing types of locations such as surveyed monuments, locations calculated by survey, locations digitized from various maps like US Geological Survey quadrangles, and locations that serve no other purpose than to stabilize the endpoint of a Boundary or angle point of a Legal Description or Parcel. Points are the only features in the upland Cadastre that have attributes regarding the source and accuracy of the data. The known accuracy of the data varies dramatically from place to place. The attributes also indicate whether there is a known physical object to look for on the ground. The second type of Point, Geodetic Control Point, point type 2, is not currently populated. The third type of Point, Significant Coordinated Location, point type 3, can be used to store any type of point location that has cadastral significance. At present, the only Significant Coordinated Points in Cadastre are those points along the Washington Pacific Ocean coast which were used by the US Minerals Management Service to calculate the boundary of the State at one marine league from the coast.WA Public Land Survey Points MetadataClick to download

  17. n

    InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InterAgencyFirePerimeterHistory All Years View - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/interagencyfireperimeterhistory-all-years-view
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    Historical FiresLast updated on 06/17/2022OverviewThe national fire history perimeter data layer of conglomerated Agency Authoratative perimeters was developed in support of the WFDSS application and wildfire decision support for the 2021 fire season. The layer encompasses the final fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2021 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer:Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoratative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimeters in 2021.https://nifc.maps.arcgis.com/home/item.html?id=098ebc8e561143389ca3d42be3707caaFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServerAgency Fire GIS ContactsRD&A Data ManagerVACANTSusan McClendonWFM RD&A GIS Specialist208-258-4244send emailJill KuenziUSFS-NIFC208.387.5283send email Joseph KafkaBIA-NIFC208.387.5572send emailCameron TongierUSFWS-NIFC208.387.5712send emailSkip EdelNPS-NIFC303.969.2947send emailJulie OsterkampBLM-NIFC208.258.0083send email Jennifer L. Jenkins Alaska Fire Service 907.356.5587 send email

  18. a

    Maryland Property Data - Parcel Points

    • dev-maryland.opendata.arcgis.com
    • data.imap.maryland.gov
    • +4more
    Updated Sep 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2021). Maryland Property Data - Parcel Points [Dataset]. https://dev-maryland.opendata.arcgis.com/datasets/maryland-property-data-parcel-points
    Explore at:
    Dataset updated
    Sep 18, 2021
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    This is a comprehensive point theme that incorporates parcel ownership and address information, parcel valuation information and basic information about the land and structure(s) associated with a given tax assessment account. Data for the Parcel point theme are obtained from the State Department of Assessments and Taxation with added data from Maryland Department of Planning. The date the point was most recently published in Planning's data products MdProperty View and FINDER Quantum is contained in the mdpvdate field. The date of the most recent Assessments data linkage to MdProperty View/FINDER Quantum points is contained in the sdatdate field. Accounts deleted between those two dates are no longer represented as points. For more information on the attribute definitions please see the MdProperty View User's Guide, available for download at https://planning.maryland.gov/Pages/OurProducts/DownloadFiles.aspx . Please Note: Due to the extensive size of the parcel points file, download is recommended from the REST endpoint (https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/MapServer/exts/MDiMapDataDownload/customLayers/0)This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/MapServer/0**Please note, due to the size of this dataset, you may receive an error message when trying to download the dataset. You can download this dataset directly from MD iMAP Services at: https://mdgeodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/MapServer/exts/MDiMAPDataDownload/customLayers/0**

  19. a

    OpenStreetMap Medical Facilities for Africa

    • hub.arcgis.com
    • africageoportal.com
    • +8more
    Updated May 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smoore2_osm (2021). OpenStreetMap Medical Facilities for Africa [Dataset]. https://hub.arcgis.com/datasets/5f23ebcc16ab4ee79534f2d1cc686a6c
    Explore at:
    Dataset updated
    May 17, 2021
    Dataset authored and provided by
    smoore2_osm
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This feature layer provides access to OpenStreetMap (OSM) point data of medical facilities for Africa, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM point (node) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes amenity features defined as a query against the hosted feature layer where the amenity value is any of 'hospital', 'clinic', 'doctors', or 'pharmacy'.In OSM, amenities are useful and important facilities for visitors and residents, such as hospitals and clinics. These features are identified with an amenity tag. There are thousands of different tag values used in the OSM database. In this feature layer, unique symbols are used for the most common amenity tags used for medical facilities.Zoom in to large scales (e.g. Neighborhood level or 1:20k scale) to see the amenity features display. You can click on a feature to get the name of the amenity. The name of the amenity will display by default at very large scales (e.g. Building level of 1:2k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this medical facilities layer displaying just one or two amenity types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. amenity is hospital), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri will publish a few such layers (e.g. Places of Worship, Schools, and Parking) that are ready to use, but not for every type of amenity.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.

  20. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +2more
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2021). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A70b5bfd9d450fc4266770c000c1d32e0e93fd17ff6e597f4c755dd7d46a8a2db
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - View Points [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-view-points-86b92

Seattle Parks and Recreation GIS Map Layer Web Services URL - View Points

Explore at:
Dataset updated
Jan 31, 2025
Dataset provided by
data.seattle.gov
Area covered
Seattle
Description

Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations View Points dataset.

Search
Clear search
Close search
Google apps
Main menu