This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.
This script will go through an entire ArcGIS Online Organization or a Portal Organization and look through all of the Users. Then, this script will check the all of the parameters of all of the Users. Then all of the parameters will be written to a csv file. The csv file can then be used to aid the administrator in the cleanup of the Items within the Organization. This is a Jupyter Notebook written using the ArcGIS Python API.
IntroductionIRWIN ArcGIS Online GeoPlatform Services The Integrated Reporting of Wildland-Fire Information (IRWIN) Production data is replicated every 60 seconds to the ArcGIS Online GeoPlatform organization so that read-only views can be provided for consumers. This replicated view is called the hosted datastore. The “IRWIN Data” group is a set of Feature Layer views based on the replicated IRWIN layers. These feature layers provide a near real-time feed of all valid IRWIN data. All incidents that have been shared through the integration service since May 20, 2014 are available through this service. The incident data provides the location of existing fires, size, conditions and several other attributes that help classify fires. The IRWIN Data service allows users to create a web map, share it with their organization, or pull it into ArcMap or ArcGIS Pro for more in-depth analysis.InstructionsTo allow the emergency management GIS staff to join the IRWIN Data group, they will need to set up an ArcGIS Online account through our account manager. Please send the response to Samantha Gibbes (Samantha.C.Gibbes@saic.com) and Kayloni Ahtong (kayloni_ahtong@ios.doi.gov). Use the below template and fill in each part as best as possible, where the point of contact (POC) is the person responsible for the account.Reply Email Body: The (name of application) application requests the following user account and access to the IRWIN Data group.POC Name: First name Last name and titlePOC Email: Username: <>_irwin (choose a username, something short, followed by _irwin)Business Justification: Once you are set up with the account, I will coordinate a call to go over any questions.
If you would like to configure your ArcGIS Online account to use Single Sign On please see the guidance https://doc.arcgis.com/en/arcgis-online/administer/saml-logins.htm
Basic Viewer is a configurable app template that can be used as a general purpose app for displaying a web map and configuring a variety of tools. This app offers a clean, simple interface that accentuates the web map and includes a toolbar and floating panel.Use CasesDisplays a set of commonly used tools within a floating pane. This is a good choice for balancing the need for a collection of tools while still maximizing the amount of screen real estate dedicated to the map. The app includes the ability to toggle layer visibility, print a map, and show pop-ups in the floating pane.Provides editing capabilities in the context of a general-purpose mapping app. This is a good choice when your audience needs additional tools or information about the map to support their editing activities.Configurable OptionsUse Basic Viewer to present content from a web map and configure it using the following options:Choose a title, sub title, logo, description, and color scheme.Configure a custom splash screen that will display when the app loads.Use custom CSS to customize the look and feel of the app.Enable tools on a toolbar including a basemap gallery, bookmarks, layer list, opacity slider, legend, measure, overview map, etc.Enable an editor tool and an editor toolbar giving users editing capabilities on editable feature layers.Configure a printing tool that can utilize all available print layouts configured in the hosting organization.Configure the ability for feature and location search.Set up custom URL parameters that define how the app and web map appear on load.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Crowdsource Manager is a configurable group app template that can be used for triaging crowd sourced data across multiple layers and maps as it is collected using applications such as Crowdsource Reporter or Collector. Using Crowdsource Manager, these reports can be reviewed and attributes such as assignment and status can be updated. Attachments and comments associated with each report are also accessible.Use CasesCrowdsource Manager can be configured for reviewing any crowd sourced information, including data collected through Crowdsource Reporter configurations such as these:citizen service requestshealth and safety reportscitizen science reportsdrone imagery reviewreviewing real estate property listingsConfigurable OptionsConfigure Crowdsource Manager to present a group of maps with editable layers, and personalize the app by modifying the following options: Display a custom title and logo in the application headerChoose a color schemeUse the map pop-up settings to specify which fields should be visible and which should be editableSupported DevicesThis application is responsively designed to support use in browsers on desktops and tablets..Data RequirementsCrowdsource Manager requires an ArcGIS Online group that contains at least one map with at least one editable feature layer.This web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Manager documentation.
Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com
Crowdsource Reporter is a configurable group app template that can be used for submitting a variety of issues or observations in a single application. Reports can be submitted anonymously, by ArcGIS named users or Twitter users. The app can also be configured to support voting for and commenting on reports submitted by others.Use CasesCrowdsource Reporter can be configured to collect information for a wide variety of topics including:citizen service requestscommunity health and safety reportscitizen science reportsreporting damaged utility assetscollecting real estate property listingsConfigurable OptionsConfigure Crowdsource Reporter to present a group of maps with editable layers, and personalize the app by modifying the following options: Customize the splash screen with a background image, title, subtitle, and options for signing in to the appSet a theme color, icon, and app messaging that suit your organizationChoose to allow users to vote and/or comment on reportsSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsCrowdsource Reporter requires an ArcGIS Online group that contains at least one map with at least one editable feature layer. In addition, the following requirements must be met to expose full app functionality:To enable votes, this layer must have a numeric field for storing the number of votes on each featureTo collect comments, the feature layer must have a related tableTo allow authenticated users to track reports they have submitted, the layer must have a text field for storing a GUID associated with their accountTo allow users to submit supporting documents with the reports, the layer must support attachmentsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a group and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Reporter documentation.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent clay (clay).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, clay is defined as particles that are smaller than 0.002mm, making them only visible in an electron microscope. Clay soils contain low amounts of air, and water drains through them very slowly.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for percent clay are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of clay particles (< 0.002 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for clay were used to create this layer. You may access the percent clay in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.
This layer is a subset of Global Landcover 1992- 2020 Layer. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Purpose: This is an ArcGIS Pro template that GIS Specialists can use to identify vulnerable populations and special needs infrastructure most at risk to flooding events.How does it work?Determine and understand the Place Vulnerability (based on Cutter et al. 1997) and the Special Needs Infrastructure for an area of interest based on Special Flood Hazard Zones, Social Vulnerability Index, and the distribution of its Population and Housing units. The final product will be charts of the data distribution and a Hosted Feature Layer. See this Story Map example for a more detailed explanation.This uses the FEMA National Flood Hazard Layer as an input (although you can substitute your own flood hazard data), check availability for your County before beginning the Task: FEMA NFHL ViewerThe solution consists of several tasks that allow you to:Select an area of interest for your Place Vulnerability Analysis. Select a Hazard that may occur within your area of interest.Select the Social Vulnerability Index (SVI) features contained within your area of interest using the CDC’s Social Vulnerability Index (SVI) – 2016 overall SVI layer at the census tract level in the map.Determine and understand the Social Vulnerability Index for the hazard zones identified within you area of interest.Identify the Special Needs Infrastructure features located within the hazard zones identified within you area of interest.Share your data to ArcGIS Online as a Hosted Feature Layer.FIRST STEPS:Create a folder C:\GIS\ if you do not already have this folder created. (This is a suggested step as the ArcGIS Pro Tasks does not appear to keep relative paths)Download the ZIP file.Extract the ZIP file and save it to the C:\GIS\ location on your computer. Open the PlaceVulnerabilityAnalysis.aprx file.Once the Project file (.aprx) opens, we suggest the following setup to easily view the Tasks instructions, the Map and its Contents, and the Databases (.gdb) from the Catalog pane.The following public web map is included as a Template in the ArcGIS Pro solution file: Place Vulnerability Template Web MapNote 1:As this is a beta version, please take note of some pain points:Data input and output locations may need to be manually populated from the related workspaces (.gdb) or the tools may fail to run. Make sure to unzip/extract the file to the C:\GIS\ location on your computer to avoid issues.Switching from one step to the next may not be totally seamless yet.If you are experiencing any issues with the Flood Hazard Zones service provided, or if the data is not available for your area of interest, you can also download your Flood Hazard Zones data from the FEMA Flood Map Service Center. In the search, use the FEMA ID. Once downloaded, save the data in your project folder and use it as an input.Note 2:In this task, the default hazard being used are the National Flood Hazard Zones. If you would like to use a different hazard, you will need to add the new hazard layer to the map and update all query expressions accordingly.For questions, bug reports, or new requirements contact pdoherty@publicsafetygis.org
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2016-2020ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: March 17, 2022National Figures: data.census.govAdditional Census data notes and data processing notes are available at the Esri Living Atlas Layer:https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview(Esri's Living Atlas always shows latest data)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2017-2021ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 8, 2022National Figures: data.census.govAdditional Census data notes and data processing notes are available at the Esri Living Atlas Layer:https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview(Esri's Living Atlas always shows latest data)
This layer shows household income ranges for households, families, married couple families, and nonfamily households (as defined by the U.S. Census). Data is from US Census American Community Survey (ACS) 5-year estimates. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.Layer includes:Total households (of various types including households, families, married couple families, and nonfamily households as defined by the U.S. Census)Household income bracketsHousehold median income in dollarsHousehold mean income in dollarsA ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Current Vintage: 2019-2023ACS Table(s): S1901 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 12, 2024National Figures: data.census.gov
This layer is subset of World Ecological Facets Landform Classes Image Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
This layer shows occupied housing units broken down by renter-occupied and owner-occupied status.Data is from the US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of occupied housing units that is renter-occupied. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2019-2023ACS Table: S2502 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 12, 2024National Figures: data.census.gov
This crash dataset does include crashes from 2023 up until near the middle of July that have been reviewed and loaded into the Maine DOT Asset Warehouse. This crash dataset is static and was put together as an example showing the clustering functionality in ArcGIS Online. In addition the dataset was designed with columns that include data items at the Unit and Persons levels of a crash. The feature layer visualization by default will show the crashes aggregated by the predominant crash type along the corridor. The aggregation settings can be toggled off if desired and crashes can be viewed by the type of crash. Both the aggregation and standard Feature Layer configurations do include popup settings that have been configured.As mentioned above, the Feature Layer itself has been configured to include a standard unique value renderer based on Crash Type and the layer also includes clustering aggregation configurations that could be toggled on or off if the user were to add this layer to a new ArcGIS Online Map. Clustering and aggregation options in ArcGIS Online provide functionality that is not yet available in the latest version of ArcGIS Pro (<=3.1). This additional configuration includes how to show the popup content for the cluster of crashes. Users interested in learning more about clustering and aggregation in ArcGIS Online and some more advanced options should see the following ESRI article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/).Popups have been configured for both the clusters and the individual crashes. The individual crashes themselves do include multiple tables within a single text element. The bottom table does include data items that pertain to at a maximum of three units for a crash. If a crash includes just one unit then this bottom table will include only 2 columns. For each additional unit involved in a crash an additional column will appear listing out those data items that pertain to that unit up to a maximum of 3 units. There are crashes that do include more than 3 units and information for these additional units is not currently included in the dataset at the moment. The crash data items available in this Feature Layer representation includes many of the same data items from the Crash Layer (10 Years) that are available for use in Maine DOT's Public Map Viewer Application that can be accessed from the following link(https://www.maine.gov/mdot/mapviewer/?added=Crashes%20-%2010%20Years). However this crash data includes data items that are not yet available in other GIS Crash Departments used in visualizations by the department currently. These additional data items can be aggregated using other presentation types such as a Chart, but could also be filtered in the map. Users should refer to the unit count associated to each crash and be aware when a units information may not be visible in those situations where there are four or more units involved in a crash.