Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Detailed Real Estate Data for Predicting House Prices and Analyzing Market Trends
This dataset contains information on 21,613 properties, making it a comprehensive resource for exploring real estate market trends and building predictive models for house prices. The data includes various features capturing property details, location, and market conditions, providing ample opportunities for data exploration, visualization, and machine learning applications.
General Information:
id: Unique identifier for each property. date: Date of sale. Price Details:
price: Sale price of the house. Property Features:
bedrooms: Number of bedrooms. bathrooms: Number of bathrooms (including partials as fractions). sqft_living: Living space area in square feet. sqft_lot: Lot size in square feet. floors: Number of floors. waterfront: Whether the property has a waterfront view. view: Quality of the view rating. condition: Overall condition of the house. grade: Grade of construction and design (scale of 1–13). Additional Metrics:
sqft_above: Square footage of the property above ground. sqft_basement: Basement area in square feet. yr_built: Year the property was built. yr_renovated: Year of last renovation. Location Coordinates:
zipcode: ZIP code of the property. lat and long: Latitude and longitude coordinates. Neighbor Comparisons:
sqft_living15: Average living space of 15 nearest properties. sqft_lot15: Average lot size of 15 nearest properties. This dataset is a valuable resource for anyone interested in real estate analytics, machine learning, or geographic data visualization.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Real estate markets are of great importance for both local and international investors. Sydney and Melbourne are two dynamic markets where economic and social factors have significant impacts on property prices. Below is a detailed description of each feature:
If you like this dataset, please contribute by upvoting
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Existing Home Median Sales Price. from United States. Source: National Association of Realtors. Track ec…
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterIn 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in June 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.
Facebook
TwitterDataset includes house sale prices for King County in USA. Homes that are sold in the time period: May, 2014 and May, 2015.
Columns: - ida: notation for a house - date: Date house was sold - price: Price is prediction target - bedrooms: Number of Bedrooms/House - bathrooms: Number of bathrooms/House - sqft_living: square footage of the home - sqft_lot: square footage of the lot - floors: Total floors (levels) in house - waterfront: House which has a view to a waterfront - view: Has been viewed - condition: How good the condition is ( Overall ) - grade: overall grade given to the housing unit, based on King County grading system - sqft_abovesquare: footage of house apart from basement - sqft_basement: square footage of the basement - yr_built: Built Year - yr_renovated: Year when house was renovated - zipcode: zip - lat: Latitude coordinate - long: Longitude coordinate - sqft_living15: Living room area in 2015(implies-- some renovations) - sqft_lot15: lotSize area in 2015(implies-- some renovations)
Facebook
TwitterExtract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Property Price: YTD Avg: Overall data was reported at 9,510.153 RMB/sq m in Mar 2025. This records a decrease from the previous number of 9,547.228 RMB/sq m for Feb 2025. China Property Price: YTD Avg: Overall data is updated monthly, averaging 5,157.474 RMB/sq m from Dec 1995 (Median) to Mar 2025, with 352 observations. The data reached an all-time high of 11,029.538 RMB/sq m in Feb 2021 and a record low of 599.276 RMB/sq m in Feb 1996. China Property Price: YTD Avg: Overall data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Price – Table CN.PD: NBS: Property Price: Monthly.
Facebook
TwitterStreet image and satellite image data can capture urban qualities and improve house price estimation.
Facebook
TwitterThe highest average price for residential property in Italy in October 2025 was registered in the region of Trentino South-Tyrol, followed by Liguria and Aosta Valley. These three regions ranked as the most expensive in the country also because of their strategic position, natural beauty and peculiarity. These characteristics make them economically successful and, from a touristic point of view, appealing to a wealthy public. In Trentino South-Tyrol, the square meter price of residential real estate was over ***** euros, over ***** euros above the country average. Lombardy: the most active market in the sector The region of Lombardy (which includes Milan) might not be as exclusive as the regions mentioned above, but its real estate market is the most active in Italy. In 2024, Lombardy registered over 151,000 transactions in the residential real estate segment. Moreover, the total value of these transactions amounted to almost ** billion euros. Milan, an attractive destination for investments Thanks to its role as a capital of business and finance as well as an innovation hub, Milan was able to attract human capital and investments, both domestic and foreign. The ability to grow and innovate was also reflected in the city’s real estate market, the most dynamic in the country. The number of transactions in residential real estate in Milan increased steadily since 2012 and so did prices: some areas of the city are among the most expensive in the country to buy a property.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The standardised house price-to-income ratio is defined as the ratio of the current price to income ratio relative to the long-term average price-to-income ratio, calculated over the period 2000 to the most recent data available. If the ratio equals 100, it means the current price-to-income ratio is equal to its long term average. House prices are provided by Eurostat, and income is calculated as adjusted household gross disposable income (B7G) per head of population based on Eurostat data.
Facebook
TwitterThis dataset provides information about the number of properties, residents, and average property values for Meadow View Place cross streets in Finleyville, PA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Spain increased to 2094 EUR/SQ. METRE in the second quarter of 2025 from 2033 EUR/SQ. METRE in the first quarter of 2025. This dataset provides the latest reported value for - Spain House Prices - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThis tells you the typical price that homes have actually sold for in the area over the last year. It’s based on SSTC sold house prices, not asking prices, to give you a realistic view of what buyers are actually paying.
Facebook
TwitterThe average resale house price in Canada was forecast to reach nearly ******* Canadian dollars in 2026, according to a January forecast. In 2024, house prices increased after falling for the first time since 2019. One of the reasons for the price correction was the notable drop in transaction activity. Housing transactions picked up in 2024 and are expected to continue to grow until 2026. British Columbia, which is the most expensive province for housing, is projected to see the average house price reach *** million Canadian dollars in 2026. Affordability in Vancouver Vancouver is the most populous city in British Columbia and is also infamously expensive for housing. In 2023, the city topped the ranking for least affordable housing market in Canada, with the average homeownership cost outweighing the average household income. There are a multitude of reasons for this, but most residents believe that foreigners investing in the market cause the high housing prices. Victoria housing market The capital of British Columbia is Victoria, where housing prices are also very high. The price of a single family home in Victoria's most expensive suburb, Oak Bay was *** million Canadian dollars in 2024.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Urban Redevelopment Authority. For more information, visit https://data.gov.sg/datasets/d_f333bf427c827efb484cf57a73ff700a/view
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset provides a comprehensive snapshot of the Texas real estate market as of 2024, featuring a curated selection of 500 property listings. It encompasses a wide array of properties, reflecting the diverse real estate landscape across Texas. This dataset serves as a foundational tool for understanding market dynamics, property valuations, and regional housing trends within the state.
Given its breadth and depth, this dataset is poised to facilitate a multitude of data science applications. Researchers and analysts can leverage this dataset for exploratory data analysis (EDA) to identify patterns, trends, and anomalies within the Texas real estate market. It is particularly suited for regression analyses to predict property prices based on various features, classification tasks to categorize properties into different market segments, and geographical data analysis to understand regional market dynamics. Despite the dataset's modest size, it offers a rich source for machine learning models aimed at providing insights into price determinants and market trends, ensuring practical applications remain within realistic and achievable bounds.
url: Web address for the property listing on Realtor.com.status: Current status of the listing, indicating availability.id: Unique identifier for each property listing.listPrice: The asking price for the property.baths: Total number of bathrooms, including partials.baths_full: Number of full bathrooms.baths_full_calc: Calculated number of full bathrooms, for consistency.beds: Number of bedrooms in the property.sqft: Total square footage of the property.stories: Number of levels or floors in the property.sub_type: Specific sub-category of the property, if applicable.text: Descriptive narrative provided for the property listing.type: General category of the property (e.g., single-family, condo).year_built: Year the property was constructed.This dataset has been meticulously compiled, adhering to ethical standards and ensuring all data is sourced from publicly available information. It respects privacy and copyright considerations, utilizing data that is openly accessible and intended for public consumption.
Gratitude is extended to Realtor.com for serving as an invaluable resource in the compilation of this dataset. The platform's commitment to providing comprehensive and accessible real estate data has significantly contributed to the depth and quality of this dataset.
The dataset thumbnail image is credited to Realtor.com, as featured on their official Facebook page. The image serves as a visual representation of the diverse and dynamic nature of the Texas real estate market, captured in this comprehensive dataset. View Image
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download: