CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Be ready for a cookieless internet while capturing anonymous website traffic data!
By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.
This product will include Anonymous IP Data and Web Traffic Data for B2B2C.
Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.
Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.
Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.
Check our product that has the most accurate Web Traffic Data for the B2B2C market.
As of the last quarter of 2023, ***** percent of web traffic in the United States originated from mobile devices, down from ***** percent in the fourth quarter of 2022. In comparison, over half of web traffic worldwide was generated via mobile in the last examined period.
Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.
Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.
Use Case: Analyze Year Over Year Growth Rate by Region
Problem A public investor wants to understand how a company’s year-over-year growth differs by region.
Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends
Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume
Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels
Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.
Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer
This data set contains internet traffic data captured by an Internet Service Provider (ISP) using Mikrotik SDN Controller and packet sniffer tools. The data set includes traffic from over 2000 customers who use Fibre to the Home (FTTH) and Gpon internet connections. The data was collected over a period of several months and contains all traffic in its original format with headers and packets.
The data set contains information on inbound and outbound traffic, including web browsing, email, file transfers, and more. The data set can be used for research in areas such as network security, traffic analysis, and machine learning.
**Data Collection Method: ** The data was captured using Mikrotik SDN Controller and packet sniffer tools. These tools capture traffic data by monitoring network traffic in real-time. The data set contains all traffic data in its original format, including headers and packets.
**Data Set Content: ** The data set is provided in a CSV format and includes the following fields:
MAC Protocol Examples 802.2 - 802.2 Frames (0x0004) arp - Address Resolution Protocol (0x0806) homeplug-av - HomePlug AV MME (0x88E1) ip - Internet Protocol version 4 (0x0800) ipv6 - Internet Protocol Version 6 (0x86DD) ipx - Internetwork Packet Exchange (0x8137) lldp - Link Layer Discovery Protocol (0x88CC) loop-protect - Loop Protect Protocol (0x9003) mpls-multicast - MPLS multicast (0x8848) mpls-unicast - MPLS unicast (0x8847) packing-compr - Encapsulated packets with compressed IP packing (0x9001) packing-simple - Encapsulated packets with simple IP packing (0x9000) pppoe - PPPoE Session Stage (0x8864) pppoe-discovery - PPPoE Discovery Stage (0x8863) rarp - Reverse Address Resolution Protocol (0x8035) service-vlan - Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq (0x88A8) vlan - VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility (0x8100)
**Data Usage: ** The data set can be used for research in areas such as network security, traffic analysis, and machine learning. Researchers can use the data to develop new algorithms for detecting and preventing cyber attacks, analyzing internet traffic patterns, and more.
**Data Availability: ** If you are interested in using this data set for research purposes, please contact us at asfandyar250@gmail.com for more information and references. The data set is available for download on Kaggle and can be accessed by researchers who have obtained permission from the ISP.
We hope this data set will be useful for researchers in the field of network security and traffic analysis. If you have any questions or need further information, please do not hesitate to contact us.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5985737%2F61c81ce9eb393f8fc7c15540c9819b95%2FData.PNG?generation=1683750473536727&alt=media" alt="">
You can use Wireshark or other software's to view files
A dataset comparing features, pricing, and ratings of the top 4 traffic bots in 2025: SparkTraffic (4.5/5), TrafficBot.co (2.5/5), Traffic-Bot.com (3.0/5), and EpicTrafficBot (3.0/5).
Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.
Want a bigger picture? Try a FREE sample of this report now!
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.
The report offers a complete analysis of a number of companies including:
With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.
According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors suc
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Retail platforms have undergone an unprecedented global traffic increase between January 2019 and June 2020, surpassing even holiday season traffic peaks. Overall, retail websites generated almost ** billion visits in June 2020, up from ***** billion global visits in January 2020. This is of course due to the global coronavirus pandemic which has forced millions of people to stay at home in order to stop the spread of the virus. Due to many shelter at home orders and a desire to avoid crowded stores in places where it is possible to shop, consumers have turned to the internet to procure everyday items such as groceries or toilet paper.
This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.
The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.
This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.
Content :
This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.
The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).
Dataset Columns:
No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance
Acknowledgements :
I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.
Ravikumar Gattu , Susmitha Choppadandi
Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).
**Dataset License: ** CC0: Public Domain
Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
ML techniques benefits from this Dataset :
This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :
Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.
Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.
3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, currently estimated at $5 billion in 2025, is projected to expand significantly over the next decade, with a Compound Annual Growth Rate (CAGR) of approximately 15% from 2025 to 2033. This growth is fueled by several key factors, including the rising adoption of e-commerce, the proliferation of sophisticated website analytics tools offering deeper insights into user engagement, and a growing emphasis on data-driven decision-making across various industries. Businesses are increasingly relying on these tools not only for basic website traffic analysis but also for advanced features like heatmap analysis, session recording, form analytics, and A/B testing, which enable personalized user experiences and targeted marketing campaigns. The market's competitive landscape is diverse, with a mix of established players like Google Analytics and Adobe Analytics, alongside emerging specialized solutions focusing on specific aspects of visitor tracking, like lead generation or user behavior analysis. This fragmentation offers businesses a wide range of options tailored to their specific needs and budgets. The continued advancement of artificial intelligence (AI) and machine learning (ML) is expected to significantly impact the future of website visitor tracking software. AI-powered tools are increasingly capable of providing predictive analytics, identifying high-value visitors, automating tasks, and personalizing the user journey with greater accuracy. While data privacy concerns and the increasing complexity of these tools pose challenges, the overall market outlook remains positive. The focus is shifting towards tools that offer more comprehensive, insightful, and privacy-compliant solutions, leading to further innovation and consolidation within the market. Furthermore, the integration of website visitor tracking with other marketing automation platforms is becoming increasingly crucial, enabling a more holistic view of the customer journey and streamlining marketing efforts. This trend is expected to drive further market growth and shape the competitive landscape in the coming years.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.
The FDOT Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 07/12/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt.zip
Data that that populates the Vision Zero View map, which can be found at www.nycvzv.info Vision Zero is the City's goal for ending traffic deaths and injuries. The Vision Zero action plan can be found at http://www.nyc.gov/html/visionzero/pdf/nyc-vision-zero-action-plan.pdf Crash data is obtained from the Traffic Accident Management System (TAMS), which is maintained by the New York City Police Department (NYPD). Only crashes with valid geographic information are mapped. All midblock crashes are mapped to the nearest intersection. Injuries and fatalities are grouped by intersection and summarized by month and year. This data is queried and aggregated on a monthly basis and is current as of the query date. Current year data is January to the end of the latest full month. All mappable crash data is represented on the simplified NYC street model. Crashes occurring at complex intersections with multiple roadways are mapped onto a single point. Injury and fatality crashes occurring on highways are excluded from this data. Please note that this data is preliminary and may contain errors, accordingly, the data on this site is for informational purposes only. Although all attempts to provide the most accurate information are made, errors may be present and any person who relies upon this data does so at their own risk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TII operates and maintains a network of traffic counters on the national primary and secondary road network in Ireland. There are currently almost 300 of these counters active across the network. For an interactive view of the data they capture, go to the TII Traffic Counter Data Website nratrafficdata.ie
Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.