82 datasets found
  1. g

    Website Traffic Dataset

    • gts.ai
    json
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

  2. d

    Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™, Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US [Dataset]. https://datarade.ai/data-products/visitiq-web-traffic-data-cookieless-first-party-opt-in-p-visitiq
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    Be ready for a cookieless internet while capturing anonymous website traffic data!

    By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.

    This product will include Anonymous IP Data and Web Traffic Data for B2B2C.

    Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.

    Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.

    Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.

    Check our product that has the most accurate Web Traffic Data for the B2B2C market.

  3. Share of global mobile website traffic 2015-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2024 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  4. G

    Website traffic strategies by industry and size of enterprise

    • open.canada.ca
    • datasets.ai
    • +3more
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Website traffic strategies by industry and size of enterprise [Dataset]. https://open.canada.ca/data/en/dataset/a7882acc-a647-4fa6-a58b-6dae889de472
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  5. a

    Traffic Site

    • hub.arcgis.com
    • data-waikatolass.opendata.arcgis.com
    Updated Sep 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamilton City Council (2021). Traffic Site [Dataset]. https://hub.arcgis.com/maps/hcc::traffic-site
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset authored and provided by
    Hamilton City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites

    Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates

    Relationship
    
    
    
    
    
    
    
    
    
    Disclaimer
    
    Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
    
    Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
    
    While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
    
    ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
    
  6. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Marshall Islands, Congo, South Africa, Bermuda, Bosnia and Herzegovina, Sri Lanka, El Salvador, Nauru, Montserrat, Finland
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  7. Share of U.S. mobile website traffic 2015-2023

    • statista.com
    Updated Mar 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of U.S. mobile website traffic 2015-2023 [Dataset]. https://www.statista.com/statistics/683082/share-of-website-traffic-coming-from-mobile-devices-usa/
    Explore at:
    Dataset updated
    Mar 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of the last quarter of 2023, 31.57 percent of web traffic in the United States originated from mobile devices, down from 49.51 percent in the fourth quarter of 2022. In comparison, over half of web traffic worldwide was generated via mobile in the last examined period.

  8. i

    Website Analytics Data

    • ideaminer.im
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Website Analytics Data [Dataset]. https://ideaminer.im/analytics
    Explore at:
    Dataset updated
    Jul 16, 2025
    Variables measured
    Categories, Total Websites, Languages Covered
    Description

    Analytics data covering website traffic, languages, and categories

  9. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  10. Daily website visitors (time series regression)

    • kaggle.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

  11. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&hl=de&inv=1&invt=Ab2fng (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data?hl=de
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  12. Traffic to fashion e-commerce websites in France 2022, by device

    • statista.com
    • ai-chatbox.pro
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Traffic to fashion e-commerce websites in France 2022, by device [Dataset]. https://www.statista.com/statistics/1309714/fashion-online-page-view-france/
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2022 - Dec 31, 2022
    Area covered
    France
    Description

    In 2022, around ************** of online visits to fashion e-commerce sites in France were made through desktop computers. Mobile devices accounted for the remaining quarter, with **** percent originating from mobile phones and *** percent from tablets.

  13. Share of website traffic from a mobile device Asia 2015-2025

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Share of website traffic from a mobile device Asia 2015-2025 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    As of May 2025, approximately 71.4 percent of the total web traffic in Asia came from a mobile device. That was a slight increase from the previous year, when mobile devices accounted for about 69.3 percent of the total web traffic in the region.

  14. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Jordan, Saint Vincent and the Grenadines, Uzbekistan, Latvia, Belarus, Jamaica, Liechtenstein, Russian Federation, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  15. Global Network Traffic Analytics Market 2018-2022

    • technavio.com
    Updated Jun 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2018). Global Network Traffic Analytics Market 2018-2022 [Dataset]. https://www.technavio.com/report/global-network-traffic-analytics-market-analysis-share-2018
    Explore at:
    Dataset updated
    Jun 21, 2018
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Global network traffic analytics Industry Overview

    Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.

    Want a bigger picture? Try a FREE sample of this report now!

    See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.

    Companies covered

    The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.

    The report offers a complete analysis of a number of companies including:

    Allot
    Cisco Systems
    IBM
    Juniper Networks
    Microsoft
    Symantec
    

    Network traffic analytics market growth based on geographic regions

    Americas
    APAC
    EMEA
    

    With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.

    Network traffic analytics market growth based on end-user

    Telecom
    BFSI
    Healthcare
    Media and entertainment
    

    According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors such as increasing use of network traffic analytics solutions and increasing use of mobile devices at workplaces will contribute to the growth of the market shares of the telecom industry in the network traffic analytics market.

    Key highlights of the global network traffic analytics market for the forecast years 2018-2022:

    CAGR of the market during the forecast period 2018-2022
    Detailed information on factors that will accelerate the growth of the network traffic analytics market during the next five years
    Precise estimation of the global network traffic analytics market size and its contribution to the parent market
    Accurate predictions on upcoming trends and changes in consumer behavior
    Growth of the network traffic analytics industry across various geographies such as the Americas, APAC, and EMEA
    A thorough analysis of the market’s competitive landscape and detailed information on several vendors
    Comprehensive information about factors that will challenge the growth of network traffic analytics companies
    

    Get more value with Technavio’s INSIGHTS subscription platform! Gain easy access to all of Technavio’s reports, along with on-demand services. Try the demo

    This market research report analyzes the market outlook and provides a list of key trends, drivers, and challenges that are anticipated to impact the global network traffic analytics market and its stakeholders over the forecast years.

    The global network traffic analytics market analysts at Technavio have also considered how the performance of other related markets in the vertical will impact the size of this market till 2022. Some of the markets most likely to influence the growth of the network traffic analytics market over the coming years are the Global Network as a Service Market and the Global Data Analytics Outsourcing Market.

    Technavio’s collection of market research reports offer insights into the growth of markets across various industries. Additionally, we also provide customized reports based on the specific requirement of our clients.

  16. Network Traffic Analysis NTA Software Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Network Traffic Analysis NTA Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-network-traffic-analysis-nta-software-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Dec 4, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Network Traffic Analysis (NTA) Software Market Outlook



    The global Network Traffic Analysis (NTA) Software market size is poised to witness a robust growth trajectory, with a projected market valuation rising from approximately USD 3.5 billion in 2023 to an impressive USD 12.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 15.2% during the forecast period. The surge in this market is predominantly fueled by the increasing need for sophisticated cybersecurity measures due to the escalating frequency and complexity of cyber threats. Organizations are progressively recognizing the critical importance of NTA software in detecting, monitoring, and responding to potential network anomalies and threats, driving the market's expansion.



    A major growth factor contributing to the burgeoning NTA Software market is the exponential growth in data traffic, attributed to the widespread adoption of cloud computing, IoT devices, and the ongoing digital transformation across industries. As enterprises expand their digital footprint, the volume of data traversing networks has seen an unprecedented rise, necessitating advanced network traffic analysis solutions to ensure efficient management and security of data. Moreover, the increasing sophistication of cyber threats, including advanced persistent threats (APTs) and ransomware, has made continuous network monitoring and analysis indispensable for organizations striving to protect sensitive information and maintain business continuity.



    Another significant driver for the NTA Software market is the growing regulatory pressures and compliance requirements across various sectors, including BFSI, healthcare, and government. These regulations mandate organizations to implement robust cybersecurity frameworks and ensure data protection, thereby propelling the demand for comprehensive NTA solutions. Companies are increasingly investing in NTA software to comply with standards such as GDPR, HIPAA, and PCI-DSS, which emphasize the importance of network security and data privacy. As regulatory landscapes continue to evolve, the necessity for effective network traffic analysis tools becomes even more pronounced, further accelerating market growth.



    The increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies in network traffic analysis is also a key factor driving the market's growth. These technologies enhance the capabilities of NTA software by enabling automated threat detection, predictive analytics, and anomaly detection, thereby improving the overall efficiency and accuracy of network monitoring. The integration of AI and ML has allowed NTA solutions to evolve from traditional reactive systems to proactive security platforms, capable of identifying and mitigating threats in real-time. This technological advancement is particularly attractive to large enterprises and government agencies that require robust security measures to safeguard critical infrastructure and data.



    From a regional perspective, North America is anticipated to lead the NTA Software market during the forecast period, owing to the region's well-established IT infrastructure and the presence of major industry players. The Asia Pacific region, however, is expected to witness the fastest growth, driven by rapid technological advancements, increasing internet penetration, and a rising focus on cybersecurity across emerging economies such as India and China. Europe also presents significant growth opportunities, supported by stringent data protection regulations and growing investments in cybersecurity solutions. These regional dynamics highlight the diverse growth trajectories and opportunities present across the global NTA Software market.



    Component Analysis



    The Network Traffic Analysis Software market is segmented into two primary components: software and services. The software segment accounts for the largest share of the market and is expected to continue its dominance throughout the forecast period. This is primarily due to the increasing demand for advanced network traffic analysis solutions that can efficiently monitor, detect, and respond to potential security threats. With the escalating frequency of cyberattacks, organizations are increasingly leveraging sophisticated software to enhance their network security posture and mitigate risks. The software component includes various solutions such as real-time traffic monitoring, anomaly detection, and threat intelligence, which are integral to comprehensive network security strategies.



    The services segment, on the other hand, is projected to witness signi

  17. Internet Traffic Data Set

    • kaggle.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asfand Yar (2023). Internet Traffic Data Set [Dataset]. http://doi.org/10.34740/kaggle/dsv/5658579
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 10, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Asfand Yar
    Description

    This data set contains internet traffic data captured by an Internet Service Provider (ISP) using Mikrotik SDN Controller and packet sniffer tools. The data set includes traffic from over 2000 customers who use Fibre to the Home (FTTH) and Gpon internet connections. The data was collected over a period of several months and contains all traffic in its original format with headers and packets.

    The data set contains information on inbound and outbound traffic, including web browsing, email, file transfers, and more. The data set can be used for research in areas such as network security, traffic analysis, and machine learning.

    **Data Collection Method: ** The data was captured using Mikrotik SDN Controller and packet sniffer tools. These tools capture traffic data by monitoring network traffic in real-time. The data set contains all traffic data in its original format, including headers and packets.

    **Data Set Content: ** The data set is provided in a CSV format and includes the following fields:

    1. Timestamp: The date and time the traffic was captured
    2. Source IP Address: The IP address of the device that sent the traffic Destination IP Address: The IP address of the device that received the traffic Protocol: The network protocol used for the traffic (e.g. TCP, UDP) Source Port: The port used by the source device for the traffic Destination Port: The port used by the destination device for the traffic Packet Size: The size of the packet in bytes Payload: The payload data of the packet The data set contains a large volume of traffic data from over 2000 customers. The data is organized by timestamp and includes all traffic data in its original format, including headers and packets. The data set contains both inbound and outbound traffic, and covers various types of internet traffic, including web browsing, email, file transfers, and more. one of listed protocols: ipsec-ah - IPsec AH protocol *ipsec-esp - IPsec ESP protocol ddp - datagram delivery protocol egp - exterior gateway protocol ggp - gateway-gateway protocol gre - general routing encapsulation hmp - host monitoring protocol idpr-cmtp - idpr control message transport icmp - internet control message protocol icmpv6 - internet control message protocol v6 igmp - internet group management protocol ipencap - ip encapsulated in ip ipip - ip encapsulation encap - ip encapsulation iso-tp4 - iso transport protocol class 4 ospf - open shortest path first pup - parc universal packet protocol pim - protocol independent multicast rspf - radio shortest path first rdp - reliable datagram protocol st - st datagram mode tcp - transmission control protocol udp - user datagram protocol vmtp - versatile message transport vrrp - virtual router redundancy protocol xns-idp - xerox xns idp xtp - xpress transfer protocol

    MAC Protocol Examples 802.2 - 802.2 Frames (0x0004) arp - Address Resolution Protocol (0x0806) homeplug-av - HomePlug AV MME (0x88E1) ip - Internet Protocol version 4 (0x0800) ipv6 - Internet Protocol Version 6 (0x86DD) ipx - Internetwork Packet Exchange (0x8137) lldp - Link Layer Discovery Protocol (0x88CC) loop-protect - Loop Protect Protocol (0x9003) mpls-multicast - MPLS multicast (0x8848) mpls-unicast - MPLS unicast (0x8847) packing-compr - Encapsulated packets with compressed IP packing (0x9001) packing-simple - Encapsulated packets with simple IP packing (0x9000) pppoe - PPPoE Session Stage (0x8864) pppoe-discovery - PPPoE Discovery Stage (0x8863) rarp - Reverse Address Resolution Protocol (0x8035) service-vlan - Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq (0x88A8) vlan - VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility (0x8100)

    **Data Usage: ** The data set can be used for research in areas such as network security, traffic analysis, and machine learning. Researchers can use the data to develop new algorithms for detecting and preventing cyber attacks, analyzing internet traffic patterns, and more.

    **Data Availability: ** If you are interested in using this data set for research purposes, please contact us at asfandyar250@gmail.com for more information and references. The data set is available for download on Kaggle and can be accessed by researchers who have obtained permission from the ISP.

    We hope this data set will be useful for researchers in the field of network security and traffic analysis. If you have any questions or need further information, please do not hesitate to contact us. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5985737%2F61c81ce9eb393f8fc7c15540c9819b95%2FData.PNG?generation=1683750473536727&alt=media" alt=""> You can use Wireshark or other software's to view files

  18. Wikipedia Web Traffic 2018-19

    • kaggle.com
    Updated Apr 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    san_bt (2021). Wikipedia Web Traffic 2018-19 [Dataset]. https://www.kaggle.com/datasets/sandeshbhat/wikipedia-web-traffic-201819/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 12, 2021
    Dataset provided by
    Kaggle
    Authors
    san_bt
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    • Time Series: Time series is a set of observations recorded over regular interval of time, Time series can be beneficial in many fields like stock market prediction, weather forecasting. - Accounts for the fact that data points taken over time may have an internal structure (such as auto correlation, trend or seasonal variation) that should be accounted for.

    • Web traffic: Amount of data sent and received by visitors to a website. - Sites monitor the incoming and outgoing traffic to see which parts or pages of their site are popular and if there are any apparent trends, such as one specific page being viewed mostly by people in a particular country

    Content

    Contains Page Views for 60k Wikipedia articles in 8 different languages taken on a daily basis for 2 years.

    https://i.ibb.co/h1JCgpY/DSLC.png" alt="DSLC">

    A Data Science Life Cycle can be used to create a project. Forecasting can be done for any interval provided sufficient dataset is available. Refer the Github link in the tasks to view the forecast done using ARIMA and Prophet. Further feel free to contribute. Several other models can be used including a neural network to improve the results by many folds.

    Acknowledgements

    Credits :
    1. Wikipedia 2. Google

  19. Global Website Traffic Analysis Tool Market Research and Development Focus...

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Website Traffic Analysis Tool Market Research and Development Focus 2025-2032 [Dataset]. https://www.statsndata.org/report/website-traffic-analysis-tool-market-46877
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    In today's digital landscape, the Website Traffic Analysis Tool market has emerged as an essential component for businesses aiming to enhance their online presence and optimize their digital strategies. These tools empower organizations to monitor their website performance, analyze visitor behavior, and derive actio

  20. a

    Traffic Services API (Webcam Images, Traffic Flow)

    • hub.arcgis.com
    • hamhanding-dcdev.opendata.arcgis.com
    Updated Aug 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Ottawa (2019). Traffic Services API (Webcam Images, Traffic Flow) [Dataset]. https://hub.arcgis.com/documents/7567f27085814487ae6df41170ea2ebf
    Explore at:
    Dataset updated
    Aug 23, 2019
    Dataset authored and provided by
    City of Ottawa
    License

    https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0

    Area covered
    Description

    For detailed information regarding the Traffic API, see the Interactive Traffic Map website from the Traffic and Parking website.Traffic WebCam APIProvides images for the City of Ottawa’s traffic web cams. These images are available at sixty second intervals and are approximately 30-50KB in size. To access the images users will be required to have an access key. The application form for access keys can be found on this page: http://trafficopendata.ottawa.ca/ts/rsadmin/certificate.jsp

    After completing the registration form and receiving a confirmation email with a certificate number you will be able to access the camera images. To access a camera image you can access the URL http://traffic.ottawa.ca/opendata/camera with the following parameters:

    Camera number Certificate: The certificate string as supplied in the confirmation email. Id: User Id (optional).

    Note: City of Ottawa cameras have camera numbers less than 2000, and MTO cameras have camera numbers greater than 2000.

    Note: The Id is a string value assigned by your user to each user or instance of your application accessing the images. The Id must be alphanumeric characters [a-z, A-Z, 0-9]. A given user id for a given certificate may only access the cameras at intervals of at least 60 seconds.

    e.g. To access City Camera 16 (Bank and Hunt Club) -- http://traffic.ottawa.ca/opendata/camera?c=16&certificate=CERT123&id=2

    e.g. To access MTO Camera 2002 (St Laurent) -- http://traffic.ottawa.ca/opendata/camera?c=2002&certificate=CERT123&id=1

    The images Getting Camera Numbers

    To obtain a list of camera numbers you can access a JSON list of the available cameras: http://traffic.ottawa.ca/map/camera_list

    More information about the format of the list can be found in the following document: http://traffic.ottawa.ca/map/opendata_info

    Accuracy: There are no known errors associated with these images. Update Frequency: N/A - API delivers most up to date information available.Contact: Motaz Aladas

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/

Website Traffic Dataset

Explore at:
jsonAvailable download formats
Dataset updated
Aug 23, 2024
Dataset provided by
GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
Authors
GTS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

Search
Clear search
Close search
Google apps
Main menu